Apollo 11: it was 45 years ago today

Posted July 20, 2014 By Kevin Orrman-Rossiter

ig205_01_02

What a time to ‘have to’ go and buy milk. Mid-morning Monday, July 21 1969, and my mother sends me up the street to get some milk. No big deal, you might say. However, a few hours prior to then, at 6:17 AEST that morning to be precise, a fragile craft, called the Eagle, had landed on the Moon – our Moon. Piloting it were two even more fragile beings, Neil Armstrong and Buzz Aldrin, and sometime that morning they would leave the Eagle and become the first people to ever walk on the Moon. The first people to ever walk on an other world – stop and think about that – what a stupendous human achievement – meanwhile I was running up the street to get the milk. Isn’t it interesting what we sometimes think of as important?

On that Monday I was home, special permission from the school because we had a television and my parents would be home, like so many others, to watch this historic event. All around Australia similar events were unfolding, those who could were at their homes watching, those who couldn’t were gathered together at schools to watch the event live. I can’t remember what others thought of the event at the time. I was enthralled, as were my close friends – despite living in suburban Australia, the space race was part of our intellectual growing-up.

090713-apollo11-40ann-02

By the completion of the first three (unmanned) Apollo missions on  April 4, 1968 I was well engaged with the race to the moon.  Interest in the American space program was a huge boost for my interest in science. This is despite the non-scientific nature of the Apollo program. Many scientists in the US decried the Apollo program as a waste of money. Instead there was a very vocal and influential support for unmanned, or robotic exploration, which could return greater scientific returns for less cost, and less risk. This debate culminated in the ‘forced’ inclusion of scientist-astronaut Harrison Schmitt on the final moon landing of the Apollo era. Of course this was a distinction that, as a primary school child, I was completely unaware.

As I, then safely returned from my milk expedition, watched, along with an estimated one-fifth of the world’s population, the moon-walk at 12:39 AEST, and heard those now famous words of Neil Armstrong’s it is safe to assume that I, amongst many others, was hooked by this spectacle. I was for ever changed in a very positive way. Cynics may deride what we gained from the moon race, or even the $25.4billion expenditure by the US to put 12 men on the Moon, and get them back safely. Some may even playfully question whether the the ‘eternal mystique of the moon could survive the onslaught of cold hard science.’  I still think that this was the greatest technological achievement in human history – one that will take some beating. In addition the view of the Earth from space, most famously photographed as ‘Earthrise’ by Bill Anders on board Apollo 8 on December 24, 1968 forever changed how we ‘see’ the Earth. This one image created an environmental awareness of the fragile Earth that has blossomed with time.

070628_moon_view_02

I will admit to feeling sorry for younger generations, living in a post Apollo world, without ever feeling the awe that this event.

                                                                                    

Fifteen years on from the Apollo 11 landing I emerged from the subterranean bunker of the accelerator at Lucas Heights, home of the Australian Nuclear Science and Technology Organisation. It was dark, the stars were out, and Rob Elliman and I chatted as we clambered into a bright yellow jeep, a superannuated relic from Maralinga days, on our way to a dinner break before continuing a 48 weekend stint on the accelerator. “I wanted to be an astronaut,” I commented as I glanced up at the moon, “Yes, me too” says Rob, “Irony is probably so did most of  our generation of physicists – and where did we end up?” “In a bunker pinging ions off semiconductor crystals,” I answer, “mmm,” completes Rob, as we roar off in the jeep. Impact is such a difficult concept to tie down.

Be the first to comment
            

Time travelers…..is there anybody out there?

Posted May 9, 2014 By Kevin Orrman-Rossiter

time-traveller-17644-1920x1200

Astrophysicists Robert Nemiroff and Teresa Wilson have undertaken what they consider to be the most sensitive and comprehensive search yet for time travelers from the future. The negative results they reported indicate that time travelers from the future may not amongst us.

Time travel has captured the public imagination for much of the past century.  Modern fictional stories involving time travel to both the past and the future are not uncommon. Prominent examples are H G Well’s The Time Machine (1895), the Doctor Who television series (BBC, 1963 – present), Time Enough for Love (Robert Heinlein, 1974), The Flight of the Horse (Larry Niven, 1974) and the Back to the Future film trilogy (Steven Speilberg, 1985, 1989, 1990). These various stories present time travel as a technological problem to be solved – in the main ignoring, or skating over, the scientific and philosophic conundrums inherent in the concept of time travel.

Time travel at first seems reasonably plausible. Einstein’s theory of general relativity holds that we live in a 4-D world with time being just another dimension – like the other 3 familiar spatial ones. Then surely traveling in time is just technical matter – just like the other 3 dimensions?

Time travel to the future has a firm scientific footing – albeit an impractical one from the perspective of personally zipping to the future to check out how it will be. For example Special Relativity has clear sub-luminal solutions that correspond to time travel to the future. A famous example of this is Paul Langevin’s 1911 Twin Paradox. This was exploited fictionally by Robert Heinlein in his 1956 novel Time for the Stars, involving identical twins, one of whom makes a journey into space in a high-speed rocket aging far slower than the twin who remained on Earth. This twin paradox has been experimentally verified, for example, using precise measurements of atomic clocks flown on aircraft and satellites.

The science of time travel into the past however is far more controversial. The philosophy of time travel, when studied at anything greater than superficial level, is guaranteed to do your head in . This simple idea enthralls first-year undergraduate philosophy students as they grapple with time travel, freedom and deliberation. I will leave that comment for another time and instead will be challenging and suggest you read Ray Bradbury’s 1953 short story A Sound of Thunder, and answer, “How did they lay the path?”, then read Robert Heinlein’s 1959 short story By His Bootstraps, and answer “How did he start this causal loop?”, and finally be enthralled by Gregory Benford’s 1980 novel Timescape, which challenges the whole idea of determinism and time travel – brilliant reading.

Little, however, has been attempted to actually search for time travelers or evidence of them. I for one have always wondered why contemporary commentators of iconic historical events don’t include incredulous reports of unexpectedly large numbers of spectators or even participants. The Texas School Book Depository in Dallas, Texas, on November 22, 1963 would surely have been over run with time traveling tourists. As for the hill of Golgotha on April 7, 30AD – the crowds would be unimaginable.

"The Time Tunnel" James Darren and Robert Colbert

“The Time Tunnel”
James Darren and Robert Colbert

However Michigan Technological University astrophysicist, Robert Nemiroff and physics graduate student, Teresa Wilson, have made a “fun-but-serious effort” to find travelers from the future by searching through internet records. They didn’t search for evidence of time travelers from the past; they couldn’t think of a test that would distinguish such a person, if they existed, from someone who has a knowledge of the past, which is most people. The authors also said that “to the best of our knowledge, human technology to create a time machine does not exist in the past, so that time travelers from the past must originate in the future, assuming such technology is ever developed.”

A time-traveler from the future might have left once-prescient content on the internet that persists today, or such information might have been placed there by a third party discussing something unusual they had heard. So they picked two events of unique significance that would remain well known into the future. The two events were the discovery of Comet ISON and the choosing of the papal name of the newly pope of the Catholic Church, Jorge Mario Bergoglio.

Comet ISON was discovered by the International Scientific Optical Network (ISON) on September 21, 2012. Therefore it came into public usage on this date. Furthermore histories of bright comets like ISON are generally well kept by astronomical societies and journals around the world, therefore it would be expected to remain memorable well into the future. Any discussions or even mentions of “Comet ISON” before September 21, 2012 could be prescient evidence of time travelers from the future.

Similarly on March 16, 2013 the term “Pope Francis” came into the public awareness when Bergoglio became the first pope to choose the name “Francis”. As papal histories are well-recorded by all manner of persons and organisations, for all manner of reasons, it again would seem reasonable that the term “Pope Francis” would remain ‘memorable’ well into the future. Again discussions or mentions before March 16, 2013 of Pope Francis might indicate the presence of time travelers from the future.

The researchers searched using Google, Google+, Facebook and Twitter to search for the terms “Comet ISON” #cometison, “Pope Francis” and #popefrancis. The terms were only found to exist post the dates that they entered the public awareness. The researchers also used Google Trends to ascertain whether any searches were made for these terms prior the events – this also proved negative. This allows the conclusion that if there were time travelers from the future they did not passively leave evidence on the internet.

TimeTravelWhat about an active response? here the researchers were not interested in conversing with time travelers, rather allowing them to indicate that time travel has become possible in the future. They did this by creating a post on a publicly available online bulletin board in September 2013, asking for one of two hashtag responses on or before August 2013. A message containing the term #ICannotChangethePast2 would indicate that time travel to the past is possible but that the time traveler believes that they do not have the ability to alter their past. Conversely a message containing the term #ICanChangethePast2 would indicate that the time traveler could change the past. Nemiroff and Wilson in their paper wisely steer away from the philosophical importance of these two stances and instead just look for the experimental results. At the time of writing no prescient tweets or emails were received.

The authors conclude:

Although the negative results they reported may indicate that time travelers are not amongst us and cannot communicate over the internet, they are not proof. It may be physically impossible for time travelers to leave any lasting remnants of their stay in the past, including even non-corporeal information remnants on the internet, or it may be physically impossible for us to find such information as that would violate some yet-unknown law of physics.

This could explain why there are no reports of huge crowds of time travelers at such historical events as the crucifixion of Christ or the assassination of President Robert Kennedy. Furthermore: “Time travelers may not want to be found, or may be good at covering their tracks.” Finally “our searches were not comprehensive, so that even if time travelers left the exact event tags […] we might have missed them due to human error.”

This is certainly a sensitive and comprehensive experiment and I think encouraging to others to develop and extend this to look for time travelers from the future.

rules-of-time-travel

 

Be the first to comment
            

The Right Stuff: astronaut biographies from Glenn to Hadfield

Posted April 15, 2014 By Kevin Orrman-Rossiter
Canadian astronaut Chris Hadfield gestures after the Russian Soyuz space capsule landed some 150 kilometers (94 miles) southeast of the town of Dzhezkazgan in central Kazakhstan, Tuesday, May 14, 2013. The Soyuz space capsule carrying a three-man crew returning from a five-month mission to the International Space Station landed safely Tuesday on the steppes of Kazakhstan. (AP Photo/ Sergei Remezov, Pool)

Canadian astronaut Chris Hadfield gestures after the Russian Soyuz space capsule landed some 150 kilometers (94 miles) southeast of the town of Dzhezkazgan in central Kazakhstan, Tuesday, May 14, 2013. The Soyuz space capsule carrying a three-man crew returning from a five-month mission to the International Space Station landed safely Tuesday on the steppes of Kazakhstan. (AP Photo/ Sergei Remezov, Pool)

An enduring image of an ‘astronaut’ was created for the public by NASA, Time magazine, and Tom Woolf’s The Right Stuff. These caricatures of  the original seven American astronauts, the so-called Mercury-7, chosen to assert American supremacy over the communist threat of Sputnik have seemingly endured way past their use by date. A resurgence in interest in ‘astronauts’ was made almost single-handedly in the English speaking world by the Canadian Colonel Chris Hadfield. His much publicised exploits, through the media of YouTube, as commander of expedition 35 aboard the International Space Station made obvious a change from May 5, 1961 when Alan Shepherd rode Freedom 7 into the history books.

In his autobiographical An Astronaut’s Guide to Life on Earth, the now retired Hadfield provides one of the most readable and honest stories of his journey from being a glider in the Royal Canadian Air Cadets in 1975 to commanding the international space Station in 2013 – after ‘only’ 21 years of astronaut training. He candidly describes the effort and training to get to being a modern astronauts – studying, practicing, learning, waiting, preparing for the worst – then being flexible enough to deal with the unexpected. What I liked is his can do approach as explained in his response to the 1969 Apollo 11moon landing and wanting to become an astronaut:

I also knew, as did every other kid in Canada, that it was impossible. Astronauts were American. NASA only accepted applications from U.S citizens, and Canada didn’t even have a space agency.

I was old enough to understand that getting ready wasn’t simply a matter of playing “space mission” with my brothers in our bunk beds, underneath a big National geographic poster of the Moon. But there was no program I could enroll in, no manual i could read, no one to ask. There was only one option, I decided. I had to imagine what an astronaut might do if he were 9 years old, then do exactly the same thing.

His laconic, sometimes counter-intuitive advise is always presented with a wealth of evidence to support his lesson. His Frank assessment of the impact of his dream on the rest of his family make a good reminder for all the corporate males who neglect family events for yet another sales meeting.

Hadfield’s book is a great read and compares favorably with two of my other notable astronaut autobiographies.

At the age of five I was devastated when my mum said to me that I could not become an astronaut. She dashed my probably overly enthusiastic boyish exuberance regarding space exploration explaining that I would need to be both American and a military pilot. Despite this early reality check, and taking a different path to Hadfield, I followed the Apollo program with enthusiasm – racing home from primary school to watch the historic moon-walk of Armstrong and Aldrin.

tumblr_inline_n2mmyn88bZ1rlx4dtOf those Apollo 11 voyagers only Michael Collins put pen to paper to capture his journeys as an astronaut in the vivid and captivating Carrying the Fire. Collins displays a fine writing style and wry sense of humor. He wrote from an earlier time than Hadfield. Collins was part of the “Apollo fourteen“, the third group of astronauts, after being unsuccessful for selection in the second group, the “New Nine”.

Collins adroitly describes his emergence as an astronaut, training for and flying on Gemini 10 with John Young and participating in the US’s third “space walk”. Collins was originally picked as part of the Apollo 8 crew. He was replaced by Jim Lovell when a bone spur was discovered on his spine, requiring surgery. He relates his feelings at losing this opportunity, Apollo 8 became the bold second manned Apollo flight all the way to circle the Moon, and then gaining his place in history as the Command Module Pilot of Apollo 11.

Other books from this era that deserve a mention are Deke Slayton’s Deke and John Glenn’s A Memoir. Both of these were of the Mercury 7. Glenn’s memoir is so straight that it strains the reader’s credulity. Extraordinarily enough it is all John Glenn – astronaut, married family man, US Senator – it is definitely one of an uncomplicated patriotic kind. Slayton was different, grounded with a heart irregularity and instead of flying became the first Chief of the Astronaut Corps and selected the crews who flew Gemini, Apollo and Skylab missions. His book, written as he was dying from cancer, covers the full space race period up to his retirement post the start of the Space Shuttle era.

Other books of note are books by Eugene Cernan The Last Man on the Moon, and John Young’s Forever Young.

My third must read astronaut autobiography though is Mike Mullane’s Riding Rockets.

This in my mind is a minor classic, again so different to both Collins and Hadfield. Mullane was part of the Space Shuttle generation of astronauts, the 1978 class of TFNGs (the Thirty Five New Guys), a group that included the first female NASA astronauts. This book contains an emotional level and cadence not pictured in other first hand astronaut memoirs.

tumblr_inline_n2mn02m7iu1rlx4dtMullane, a self-confessed inhabitant from planet ‘arrested development’ shares his growing pains in recognising that women could be colleagues and brilliant astronauts at that. His brutally honest depiction of losing his friend Judy Resnik in the Challenger disaster due to NASA hubris. Mullane describes in vivid detail the subsequent appalling bureaucratic treatment of the family members who were present at the disastrous launch. His own experience prior to this when STS-27 suffered near catastrophic heat shield damage from launch damage makes this description all the more poignant.

The whole fateful uncertainty of the Space Shuttle era, the “glory and the folly” of this remarkable era in human exploration of near space is wittily and cuttingly told. If you aren’t both amazed and angered in reading this memoir than I suggest you go back and read it again.

Chris Hadfield | An Astronaut’s Guide to Life on Earth | Little Brown & Company | 2013 | ISBN 978-0-316-25301-7 | 295 pp | hardback

Michael Collins | Carrying the Fire | 1974 | 40th Anniversary edition 2009 | Farrar Straus and Giroux | ISBN 978-0-374-53194-2 | 478 pp | paperback

Mike Mullane | Riding Rockets | Scribner | 2006 | ISBN 978-0-7432-7683-2 | 382 pp | paperback

This review was first published on DragonLaughing here.

Be the first to comment
            

Missions to Mars

Posted March 28, 2014 By Kevin Orrman-Rossiter

tumblr_inline_n1uhh2T8wV1rlx4dtForty years ago we last stepped foot on the Moon. Currently, with our occupation of the low-Earth orbit international space station, we are space residents. In the visionary Mission to Mars (National Geographic Society, 2013), moon-walker, space advocate, Gemini 12 and Apollo 11 astronaut, Buzz Aldrin, challenges us to take a further step and colonise Mars. Aldrin advocates bypassing the Moon and instead make progressive steps to mars via comets, asteroids and Mar’s moon Phobos. From Phobos astronauts using remote controlled robots will prepare the Mars landing site and habitats. Aldrin states that regular space travel to Mars would be too expensive with Apollo-style modular expendable components, instead favoring a gravity-powered spaceship cycling permanently between the Earth and Mars. Although strongly advocating for a US led enterprise Aldrin, thankfully, sees cooperation, rather than competition with China, Europe, Russia, India and Japan as being the way forward.

Currently we have the Dutch company Mars One are recruiting people to be part of a permanent human settlement on Mars by 2023; the US commercial firm SpaceX have their Red Dragon proposal to put a sample-return mission to Mars by 2018 (seen as a necessary precursor by NASA to a human exploration); the Chinese have a long term plan for non-crewed flights to Mars by 2033 and crewed phase of missions to Mars during 2040-2060. Although the funding mechanisms and motivations are different these plans all make use of one idea or more from book The Case for Mars (Free Press, 1996, 2011). Written by aerospace engineer and founder of the Mars Society, Robert Zubrin, it is a meticulous and plausible way to settle Mars. Aldrin’s book is more broad and his ideas fit well with current technologies, US aspirations for asteroid capture and exploitation, and NASA’s focus on the planet Mars.

The veteran Mars Exploration Rover, Opportunity, is still surprising us with its discoveries, more than nine years after the completion of its 90 day primary mission. While the sprightly youngster Curiosity is regularly rewriting and deepening our understanding of Mars – still only half-way through its three year primary mission.

Appreciating what it takes to get a scientific laboratory wheeling its way across Mars is enticingly portrayed in another  new book Red Rover (Basic Books, 2013). This first-hand account is written by Roger Wiens, lead scientist for ChemCam – the laser zapping remote chemical analytical instrument onboard the rover Curiosity. It covers his involvement in robotic space exploration from his initiation in 1990 on the NASA Genesis probe to the joyous moment when Curiosity zapped its first rock in early 2013. If this piques your curiosity then the earlier Roving Mars: Spirit, Opportunity, and the exploration of the Red planet (Scribe, 2005) is well worth tracking down. A passionate insight into the  2004 twin rover Spirit and Opportunity mission by Steve Squyres, the mission’s scientific principal investigator.

These robotic missions are prudent preparatory steps to Aldrin provides and engaging overview of the technical, economic and political reasons for humanity to journey to Mars. It has been a self-professed vision of his since his return from the Moon. This books, though, represents Aldrin’s first attempt to put the whole of the puzzle, his Unified Space Vision, together in one place. For a more technical read on the settlement and exploration of Mars then Zubrin’s revised and updated The Case for Mars (Free press, 2011) and Marswalk One: first steps on a new planet (Praxis, 2005) by astronautical historian, writer and designers David Shayler, Andrew Salmon and Michael Shayler are also recommended. Mission to Mars though is a clarion call, essential reading for anyone interested in humanity’s next big step.

This was first printed in COSMOS Magazine then posted here at Dragon Laughing in March 2014.

tumblr_inline_n1uhht3b9R1rlx4dt

 

Be the first to comment
            

How curiosity became transformed

Posted March 2, 2014 By Kevin Orrman-Rossiter

ball-illo-2_2215232b

Curiosity; seen as a hazard to society in the classical world, early Christianity condemned it as a sin, and now, in the modern world, it is seen as an essential part of human nature. Somewhere between the late 1500s and 1700s attitudes in Europe changed. The change, according to Phillip Ball in Curiosity, was gradual and far from obvious. In this fascinating book Ball describes how curiosity was transformed over this period from a sense of ‘wonder’ through natural philosophy to the professional curiosity of modern day science.

The emphasis in Curiosity is not on some progress of science, gradual or otherwise, triumphing over the medieval church. Rather Ball presents a nuanced and almost chaotic extended period of change. The change is one from the ‘scholastic’ belief that truth was a “question of authority and status: a fact was verified if it could be found in an authoritative text, but otherwise it was mere hearsay” to experimental philosophers who imagined methods for turning facts into laws. These facts were either from observation of nature or via the startling new practice of ‘experiment’.

So we arrive at the modern world not by a straight line. Rather it is reached by a plethora of men (invariably) who held what from a modern perspective are competing and confounding ideas at the one time. The strength of Ball’s book lies in his ability to turn his research into astute and captivating observations of these people and what they perceived as they unwrapped nature. At the same time chronicling the how the invention and use of novel instruments, the telescope, microscope and the air-pump, rocked the beliefs about the world and what were the acceptable limits to curiosity.

Curiosity is a fascinating insight into what frames the questions that scientists ask, it is essential reading for anyone interested in understanding how science shapes, and is shaped, by society.

Philip Ball, Curiosity: how science became interested in everything | 2013 | Vintage| 465 pages | ISBN 9780099554271

This review first published March 2 2014 on Seneca’s Child, read the original here.

14620

Be the first to comment
            

Black holes and revelations: Stephen Hawking memoir

Posted February 25, 2014 By Kevin Orrman-Rossiter

Stephen_Hawkin_2_370636k

Stephen Hawking: My brief history

Stephen Hawking’s memoir is a brief amble through his life from early childhood to date. Hawking’s memoir does cut through some of the hype that could surround someone who is “possibly the best-known scientist in the world.” At the same time he presents many of his remembrances with a quaint gentle sort of humor, that at the same time reminds you that this is no ordinary human. Two of my favorites are:

I was born on January 8, 1942, exactly three hundred years after the death of Galileo. I estimate, however that about two hundred thousand other babies were also born that day. I don’t know whether any of them was later interested in astronomy.

The first scientific description of time was given in 1689 by Sir Isaac Newton, who held the Lucasian chair at Cambridge that I used to occupy (though it wasn’t electrically operated in his time).

The memoir for me reflected almost two personalities. The first an almost languid bored life; that becomes more focused at the age of twenty-one when Hawking is told that he has motor-nurone disease and may only live a few more years.

Even as a child Hawking does not seem to demonstrate (at least not in the memoir) the genius that we now associate his name with. As an undergraduate at Oxford he claims to have worked about a thousand hours in the three years, an average of an hour a day. Affecting the air of complete boredom of the time and ascribing to the prevailing attitude at Oxford that was very anti-work.

You were supposed to be either brilliant without effort or accept your limitations and get a fourth-class degree.

Stephen Hawking

The thought of an early death, a cloud hanging over his future were changed moving to graduate studies at Cambridge and there meeting and getting engaged to Jane Wilde. From this point on the memoir gather intellectual pace. Hawking takes us through being awarded a research Fellowship at Caius College, finishing his PhD, getting married, and his early work on gravity waves, the big bang and black holes.

The latter half of the book can seem cursory, focusing on Hawking’s work at Caltech and then back at Cambridge. During this period he had two more children and then eventually split with his first wife Jane, and marrying Elaine Mason his nurse. These personal stories were adequately covered – requiring none of the histrionic embellishments as you might find in a ‘celebrity’ autobiography. Hawking’s work stands as a singularly intellectual triumph.

This book is also fortunately light on obsessive detail that sometimes clouds the historical biography. Instead we have an enjoyable insightful memoir, accessible to all, of one of the most brilliant minds in modern times. I recommend it to all science buffs and those interested in those who have made a personal difference on a cosmological difference in our time.

Stephen Hawking, My Brief History: a memoir, (2013) Bantam Press, Sydney, ISBN 9780593072523.

stephen-hawking-zeero-gravity

 

1 Comment. Join the Conversation
            

Planet-Earth-001

Just on 30 years ago I came across an intriguing book, the then relatively unknown Gaia: A new look at life on Earth (OUP 1979) by an ‘independent scientist’, J.E. Lovelock. My earliest impression of it may seem surprising to many people now. I was infuriated. I was infuriated not by Lovelock’s hypothesis per se, but by what I impugned was his underlying purpose behind proposing this model.

Gaia was presented by Lovelock as a fifteen year quest to substantiate the model:

“in which the Earth’s living matter, air, oceans, and land surfaces form a complex which can be seen as a single organism and which has the capacity to keep our planet a fit place for life.”

That was an intriguing hypothesis. The infuriating part I found was the implication that thanks to Gaia our fears of pollution-extermination may be unfounded. In particular I found the logic of chapter 7 (Gaia and Man: the problem of pollution) to be pernicious. On the untested assumption that Gaia did exist, and in the form suggested by Lovelock, he proposed the idea “there is indeed ample evidence that pollution is as natural to Gaia as is breathing to ourselves and most other animals.” The philosopher in me took umbrage at his glib jibes at the various current environmental perspectives – chiding them for their naive perspectives.

pic_6

It took at least another careful read of Gaia before I appreciated Lovelock’s perspective, which his follow-on books left the reader in no doubt. Gaia: a new look at life on Earth was followed by The Ages of Gaia in 1988 (both books were revised for 2nd editions in 1995), Lovelock’s autobiography Homage to Gaia: the life of an independent scientist (OUP, 2000) was followed by the more strident The Revenge of Gaia (Allen Lane, 2006) and The Vanishing Face of Gaia: a final warning (Allen Lane, 2009). There was still the unanswered question – does Gaia exist?

The reaction to the question of Gaia’s existence is one of the the great legacies of Lovelock’s book. Lovelock’s eloquence and novelty of hypothesis inspired many responses and continues to provoke fierce debate. It has taken some time for a concise critical scientific analysis, in a form accessible to the interested educated reader, of the major assertions and arguments underpinning the Gaia hypothesis to be written. Toby Tyrrell, Professor of Earth Systems Science at the University of Southampton has managed to deliver this.

In On Gaia: a critical investigation of the relationship between life and Earth (Princeton University press, 2013), Tyrell asks and answers the question: “Does the Gaia hypothesis hold up in court?”

k9959

Tyrrell gets down to business in a succinct manner. He distills the Gaia hypothesis to three main facts, or classes of facts that Lovelock has advanced in support of the hypothesis. They are:

  1. The environment is very well suited to the organisms that inhabit it
  2. The Earth’s atmosphere is a biological construct whose composition is far from expectations of (abiotic) chemical equilibrium, and
  3. The earth has been a stable environment over time, despite external forcings.

Tyrell reminds us that the Gaia hypothesis is not the only one that looks at the relationship between life and environment on Earth. So in his book he takes these three facts and examines the evidence for them in the light of two other competing hypotheses; the Geological and the Coevolutionary.

The Geological hypothesis was the dominant paradigm among geologists and other scientists at the time Gaia was written. According to this way of thinking life has been a passenger on Earth, helplessly buffeted around by a mixture of geological forces and astronomical processes. Life adapts to this environment but does not itself affect it.

The Coevolutionary hypothesis assumes that there is two way traffic: not only does the nature of the environment shape the nature of life, life also acts as a force that shapes the planetary environment. There is one obvious, although too easily missed, difference between the coevolution of life and climate and of two life forms; such as the interactions between predators and prey and between hosts and parasites for example. There is no equivalent cumulative evolutionary process that builds better-adapted oceans or atmospheres over time. This means that this hypothesis makes no claims about the wider outcomes of the interaction. The Gaia hypothesis suggest that the outcome of the interaction has stabilized the planet and kept it favorable for life; Coevolution is neutral about such claims.

Having carefully framed the questions, and presented some viable alternatives, Tyrell then very eloquently and elegantly (in that scientific sense) looks at the evidence for which hopythesis fits the facts best.

In doing this he takes us on quite an adventure. We look at extremophiles and life over the glacial and interglacial eons, because as Lovelock states “the most important property of Gaia is the tendency to optimize conditions for all terrestrial life”. In other chapters by examining, over time, deep sea plankton nitrogen and phosphorus ratios, and atmospheric oxygen and methane levels Tyrrell convincingly demonstrates that the earth’s atmosphere is a biological construct. Having established that life has the power to shape the Earth he then examines what are the environmental alterations are produced.

By carefully examining two evolutionary innovations that have most obviously shaken the world: (i) the evolution of oxygen-yielding photosynthesis, and (ii) the colonization of land by the first forests, we find that life has always changed to exploit and closely fit it, as it must because of evolution. Finally by examining the rocks, glaciation levels, seawater chemistry and the ups and downs of greenhouse gases for the past 500 million years Tyrell concludes that Gaia has not helped to keep the Earths environment stable – because the research shows that the environment has not been stable.

The final chapter is a masterful example of clear thinking. Tyrrell revisits the road travelled, weaves the strands together and draws his conclusion that Gaia is a fascinating but flawed hypothesis. Tyrrell does not stop there he proposes new “intriguing research topics” that have arisen as a consequence of evaluating the Gaia hypothesis. As well he reminds us why this evaluation is important: planetary management requires solid understanding, Gaia imbues undue optimism, and the need for an unbiased worldview.

On Gaia: a critical investigation of the relationship between life and Earth (Princeton University Press, 2013), is a great contribution to an important scientific, and human debate. Toby Tyrrell demonstrates both a fine grasp of science, and science communication.  An intelligent reader will find this book rewarding, for both these reasons.

On Gaia: A Critical Investigation of the Relationship between Life and Earth
Toby Tyrrell

Cloth | 2013 | US$35.00 / £24.95 | ISBN: 9780691121581, 320 pp. | 6 x 9 | 16 halftones. 31 line illus. 12 tables.

            

Connectomics: a window to the mind

Posted November 17, 2013 By Kevin Orrman-Rossiter
130807134241-large
Medulla connectome module as a 3D graph. Cell types with stronger connections are positioned closer to each other, using the visualization of similarities layout algorithm47. Three spatially segregated groups are observed that closely match the pathways identified through clustering (colouring of spheres). The dominant direction of signal flow is oriented into the page22.

The connectome module as a 3D graph. Cell types with stronger connections are positioned closer to each other, using an algorithm. Three spatially segregated groups are observed that closely match the pathways identified through clustering (colouring of spheres). The dominant direction of signal flow is oriented into the page.

The human brain has 100 billion neurons, connected to each other in networks that allow us to interpret the world around us, plan for the future, and control our actions and movements. Mapping those networks, creating a wiring diagram of the brain could help scientists learn how we each become our unique selves. Understanding the brain and all its connections is Connectomics – a word soon to become as familiar as ‘genetics’.

In three papers appearing in Nature, scientists report their first step toward this goal: Firstly using a combination of human and artificial intelligence, they have mapped all the wiring among 950 neurons within a tiny patch of the mouse retina. While a second group look at a classic problem of neural computation – the detection of visual motion – in the eye of a fruitfly.

The eye of the mouse

The retina is technically part of the brain, as it is composed of neurons that process visual information. Neurons come in many types, and the retina is estimated to contain 50 to 100 types, but they’ve never been exhaustively characterised. Their connections are even less well known. Neurons in the retina are classified into five classes: photoreceptors, horizontal cells, bipolar cells, amacrine cells and ganglion cells. Within each class are many types, classified by shape and by the connections they make with other neurons.

In this study, the research team focused on a section of the retina known as the inner plexiform layer, which is one of several layers sandwiched between the photoreceptors, which receive visual input, and the ganglion cells, which relay visual information to the brain via the optic nerve. The neurons of the inner plexiform layer help to process visual information as it passes from the surface of the eye to the optic nerve.

By mapping all of the neurons in a 117-micrometre-by-80-micrometre patch of tissue, researchers were able to classify most of the neurons they found, based on their patterns of wiring. They also identified a new type of retinal cell that had not been seen before. To map all of the connections in this small patch of retina, the researchers first took electron micrographs of the targeted section generating high-resolution three-dimensional images of biological samples.

Developing a wiring diagram from these images required both human and artificial intelligence. First, the researchers hired about 225 German undergraduates to trace the “skeleton” of each neuron, which took more than 20,000 hours of work (a little more than two years).

To flesh out the bodies of the neurons, the researchers fed these traced skeletons into a computer algorithm, which expands the skeletons into full neuron shapes. The researchers used machine learning to train the algorithm, known as a convolutional network, to detect the boundaries between neurons. Using those as reference points, the algorithm can fill in the entire body of each neuron.

The only previous complete wiring diagram, which mapped all of the connections between the 302 neurons found in the worm Caenorhabditis elegans, was reported in 1986 and required more than a dozen years of tedious labor.

Classifying neurons

Wiring diagrams allow scientists to see where neurons connect with each other to form synapses – the junctions that allow neurons to relay messages. By analyzing how neurons are connected to each other, researchers can classify different types of neurons.

130807133519

950 neurons in a block of mouse retina, reconstructed from serial block-face electron microscopy data by the students. Spheres indicate the cell bodies (ganglion cells: blue, amacrine cells: green, bipolar cells: orange, photoreceptors: gray). “Skeleton” reconstructions of all neurons appear as web between the cell body layers. Black/white background shows the final connectivity matrix (the “connectome”) between the 950 neurons. (Credit: Julia Kuhl, Winfried Denk; Helmstaedter et al., Max Planck Institute for Medical Research)

The researchers were able to identify most of the 950 neurons included in the new retinal-wiring diagram based on their connections with other neurons, as well as the shape of the neuron. A handful of neurons could not be classified because there was only one of their type, or because only a fragment of the neuron was included in the imaged sample. In this study, the researchers identified a new class of bipolar cells, which relay information from photoreceptors to ganglion cells. However, further study is needed to determine this cell type’s exact function.

It should be noted, and is by the researchers, that this analysis provides contact information, but not synaptic strength. The absence of a contact always indicates a lack of synaptic connection. If our goal is to ‘learn how we each become our unique selves’ then synaptic strength is an important measure – an indication of cognitive abilities related to memory and learning.

The project of classifying types is not completed, but this work shows that it should be possible, in principle, if it’s scaled up to a larger piece of tissue. To analyse an entire mouse brain in this way would require several billion hours of human attention, that is 225 students for 200,000 years – suggesting that such a task is incredibly ambitious. The researchers are convinced, as are many other neurobiologists, that mapping and decoding the connectome will revolutionize brain research.

Ever tried to swat a fruitfly?

nature12320.pdf - Adobe Acrobat Pro

An example of the experimental set-up to measure the neuron activity and visual field of the fruitfly. Image is courtesy of Matthew S. Maisak, Juergen Haag et al, Max Planck Institute of Neurobiology.

A fruitfly is effective at dodging predators and rapidly navigating during flight, so it is a perfect insect model for visual motion detection. It is easy to make simple models of motion detection: photoreceptor cells cannot detect direction but downstream (towards the brain) neurons, called tangential cells, do respond to the direction of movement. Somewhere in between lies the neural mechanism that creates this discrimination.

The authors here developed a semi-automatic method constructing a connectome of 379 neurons and 8,637 chemical synaptic contacts then matched these reconstructed neurons to cells types using light microscopy. Using this model and supportive evidence using some very elegant optical microscopy, which forms the third paper in Nature, the researchers identified the cells that constitute a motion detection circuit.

What these studies demonstrate is the power of connectomes to uncover key insights into the detail of the brain’s processing circuitry. At present the scales seem ‘mind-boggling’, any serious work would seem to be the province of well-heeled laboratories. However, as pointed out in a Nature News & Views article, “the researchers have stressed that the connectomic reconstructions will be public resources” making these invaluable resources for neuroscience.

Connectomics – a word to be remembered.

First published in Australian Science.

Be the first to comment
            

Concrete: a thoroughly modern material

Posted August 22, 2013 By Kevin Orrman-Rossiter

450px-BlocosConcrete and cement. Words synonymous with solidity and well, staidness. Cement is probably the most ubiquitous building material of the late 20th century – yet it may provide some very 21st century surprises. Researchers at the University of Alicante have developed a cement material incorporating carbon nanofibres in its composition, turning cement into an excellent conductor of electricity. Similarly scientists from the USA, Japan, Finland and Germany have unraveled the formula for transforming liquid cement into liquid metal – opening up its use in the profitable consumer electronics marketplace for thin films, protective coatings, and computer chips.

The warmer side of concrete

Concrete is a composite material composed of coarse granular material (the aggregate or filler) embedded in a hard matrix of material (the cement or binder) that sets and hardens independently, filling the space among the aggregate particles and gluing them together. Concrete made from such mixtures was first used in Mesopotamia in the third millennium B.C. and later in Egypt. It was further improved by the Ancient Macedonians and three centuries later on a large scale by Roman engineers. They used both natural pozzolans (such as pumice) and artificial pozzolans (ground brick or pottery) in these concretes. Many excellent examples of structures made from these concretes are still standing, notably the huge dome of the Pantheon in Rome and the massive Baths of Caracalla. The vast system of Roman aqueducts also made extensive use of hydraulic cement.

Misleadingly low, the Pantheon's exterior dome steps outwards as it meets the uppermost ring of the drum. Photo credit: Anthony M. Wikimedia Commons.

Misleadingly low, the Pantheon’s exterior dome steps outwards as it meets the uppermost ring of the drum. Photo credit: Anthony M. Wikimedia Commons.

Conventional concrete is a poor conductor of electricity. To obtain a cement-like compound that is effective as a heating element, it then should have a low resistivity. This has been achieved by the addition of conductive materials such as carbon fibres, for example. This new technology, developed and patented by the University of Alicante Civil Engineering Department’s Research Group in Multifunctional Concrete Conductors, allows, among other functions, the material to heat up due to the passage of current.

The technology allows buildings’ premises to heat or prevents the formation of ice on infrastructure, such as highways, railways, roads, airstrips and other elements. In this way, a new conductive compound with much more interesting properties is achieved since it keeps the structural properties of concrete and does not compromise the durability of the structures themselves. This new product has a great versatility, since any existing structure or surface can be coated with it, keeping thermal control in it by applying continuous electric current. At present, the research group has developed trials to test the technology in plasters with carbonaceous materials. These tests have given very satisfactory results, obtaining optimal properties of heating the material with minimum energy consumption.

21st century metallic-glass cement

A team of scientists from the USA, Japan, Finland and Germany have made a metallic-glass cement. This new material has lots of applications, including as thin-film resistors used in liquid-crystal displays – basically the flat panel computer monitor that you are probably reading this from at the moment. The team have demonstrated how make and understand the cement-to-metal transformation, which has positive attributes including better resistance to corrosion than traditional metal, less brittleness than traditional glass, conductivity, low energy loss in magnetic fields, and fluidity for ease of processing and molding. Previously, only metals have been able to transition to a metallic-glass form. Cement does this by a process called electron trapping, a phenomena only previously seen in ammonia solutions. Understanding how cement joined this exclusive club opens the possibility of turning other solid normally insulating materials into room-temperature semiconductors.

This phenomenon of trapping electrons and turning liquid cement into liquid metal was found recently, but not explained in detail until now. Now that the conditions needed to create trapped electrons in materials are known, other materials can be developed and tested to find out if we can make them conduct electricity in this way. The results were reported in the journal the Proceeding of the National Academy of Sciences in the articleNetwork topology for the formation of solvated electrons in binary CaO-Al2O3 composition glasses.”

Close-up visualizations of (A) the HOMO and (B) LUMO single-particle electron states in the 64CaO glass. Both states are spin-degenerate, and h1 labels the cavity (cage) occupied by LUMO. Yellow and magenta stand for different signs of the wave-function nodes. (C) Simulation box and the electron spin-density of the 64CaO glass with one oxygen subtracted at h2—that is, with two additional electrons. The two electrons have the same spin and they occupy separate cavities, h1 (boundary, also shown in B) and h2 (center, location of removed oxygen), which are separated by 12 Å from each other. (D) Cage structure around the spin-density of one electron cor- responding to the h2 cavity (close-up from C). Al, gray; Ca, green; O, red.

Close-up visualizations (A) and (B)of single-particle electron states in the 64CaO glass. (C) Simulation box and the electron spin-density of the 64CaO glass with one oxygen subtracted at h2—that is, with two additional electrons. The two electrons have the same spin and they occupy separate cavities, h1 (boundary, also shown in B) and h2 (center, location of removed oxygen), which are separated by 12 Å from each other. (D) Cage structure around the spin-density of one electron cor- responding to the h2 cavity (close-up from C). Al, gray; Ca, green; O, red. Image credit: Argonne National laboratory.

The team of scientists studied mayenite, a component of alumina cement made of calcium and aluminum oxides. They melted it at temperatures of 2,000 degrees Celsius using an aerodynamic levitator with carbon dioxide laser beam heating. The material was processed in different atmospheres to control the way that oxygen bonds in the resulting glass. The levitator keeps the hot liquid from touching any container surfaces and forming crystals. This let the liquid cool into glassy state that can trap electrons in the way needed for electronic conduction.

The scientists discovered that the conductivity was created when the free electrons were “trapped” in the cage-like structures that form in the glass. The trapped of electrons provided a mechanism for conductivity similar to the mechanism that occurs in metals. To uncover the details of this process, scientists combined several experimental techniques and analyzed them using a supercomputer.

These developments are sure to provide an impetus for a new look at old building material.

This was originally published here on Australian Science

1 Comment. Join the Conversation
            

Schrödinger’s cat: the quantum world not so absurd after all?

Posted August 2, 2013 By Kevin Orrman-Rossiter
640px-Schrodingers_cat.svg

Diagram of Schrödinger’s cat theory. Image credit: Dhatfield

Since Erwin Schrödinger’s famous 1935 cat thought experiment, physicists around the globe have tried to create large scale systems to test how the rules of quantum mechanics apply to everyday objects. Scientists have only managed to recreate quantum effects on much smaller scales, resulting in a nagging possibility that quantum mechanics, by itself, is not sufficient to describe reality.

Researchers Alex Lvovsky and Christoph Simon from the University of Calgary recently made a significant step forward in this direction by creating a large system that displays quantum behaviour, publishing their results in Nature Physics.

Understanding Schrödinger’s cat

Quantum mechanics is without doubt one of the most successful physics theories to date. Without it the world we live in would be remarkably different: driving and shaping our modern world making possible everything from computers, mobile phones, nuclear weapons, solar cells and our everyday appliances. At the same time it presents us with conundrums that are at the far end of reason; challenging even the greatest minds to comprehend.

In contrast to our everyday experience, quantum physics allows for particles to be in two states at the same time — so-called quantum superpositions. A radioactive nucleus, for example, can simultaneously be in a decayed and non-decayed state.

 Schrödinger's Cat, many worlds interpretation, with universe branching. Visualization of the separation of the universe due to two superposed and entangled quantum mechanical states. (image credit: Christian Schirm)

Schrödinger’s Cat, many worlds interpretation, with universe branching.
Visualization of the separation of the universe due to two superposed and entangled quantum mechanical states. (image credit: Christian Schirm)

Applying these quantum rules to large objects leads to paradoxical and even bizarre consequences. To emphasize this, Erwin Schrödinger, one of the founding fathers of quantum physics, proposed in 1935 a thought experiment involving a cat that could be killed by a mechanism triggered by the decay of a single atomic nucleus. If the nucleus is in a superposition of decayed and non-decayed states, and if quantum physics applies to large objects, the belief is that the cat will be simultaneously dead and alive.

Schrödinger’s thought experiment involves a (macroscopic) cat whose quantum state becomes entangled with that of a (microscopic) decaying nucleus. While quantum systems with properties akin to ‘Schrödinger’s cat’ have been achieved at a micro level, the application of this principle to everyday macro objects has proved to be difficult to demonstrate. The experimental creation of such micro-macro entanglement is what these authors successfully achieved.

Photons help to illuminate the paradox

The breakthrough achieved by Calgary quantum physicists is that they were able to contrive a quantum state of light that consists of a hundred million photons and can even be seen by the naked eye. In their state, the “dead” and “alive” components of the “cat” correspond to quantum states that differ by tens of thousands of photons.
nphys2682-f1

While the findings are promising, study co-author Simon admits that many questions remain unanswered.

“We are still very far from being able to do this with a real cat,” he says. “But this result suggests there is ample opportunity for progress in that direction.”

Seeing quantum effects requires extremely precise measurements. In order to see the quantum nature of this state, one has to be able to count the number of photons in it perfectly. This becomes more and more difficult as the total number of photons is increased. Distinguishing one photon from two photons is within reach of current technology, but distinguishing a million photons from a million plus one is not.

Decoherence: the emergence of the classical world from the quantum

Why don’t we see quantum effects in everyday life? The current explanation is that it is to do with decoherence.

Physicists see quantum systems as fragile. When a photon interacts with its environment, even just a tiny bit, the superposition is destroyed. This interaction, could be as a result of measurement or an observation, or just a random interaction. Superposition is a fundamental principle of quantum physics that says that systems can exist in all their possible states simultaneously. But when measured, only the result of one of the states is given.

This effect is known as decoherence and it has been studied intensively over the last few decades. The idea of decoherence as a thought experiment was raised by Erwin Schrödinger,  in his famous cat paradox. Unfortunately for non-physicists decoherence only provides an explanation for the observance of wave function collapse, as the quantum nature of the system “leaks” into the environment. It does not tell us where the line, if such one does exist, between the quantum and everyday is.

Although Schrodinger’s thought experiment was originally intended to convey the absurdity of applying quantum mechanics to macroscopic objects, this experiment and related ones suggest that it may apply on all scales.

If you are interested in the history and foundation of quantum mechanics then I highly recommend Quantum: Einstein, Bohr and the great debate about the nature of reality, by Manjit Kumar (2009), and The Age of Entanglement: when quantum physics was reborn, by Louisa Gilder (2008). Both are well-researched and captivating brilliant accounts of science science and scientists.

This article first published here in Australian Science.

1 Comment. Join the Conversation
            

Lake Vostok: life beneath the ice

Posted July 26, 2013 By Kevin Orrman-Rossiter
Vostok Station, Antarctica, the Russian base directly above Lake Vostok. ( Michael Studinger/Lamont-Doherty Earth Observatory/KRT/Newscom)

Vostok Station, Antarctica, the Russian base directly above Lake Vostok. ( Michael Studinger/Lamont-Doherty Earth Observatory/KRT/Newscom)

Imagine, Lake Vostok is covered by more than 3,700 metres of Antarctic ice. Devoid of sunlight, it lies far below sea level in a depression that formed 60 million years ago, when the continental plates shifted and cracked. Few nutrients are available. Yet scientist, led by Scott Rogers, a Bowling Green State University professor of biological sciences, have found a surprising variety of life forms living and reproducing in this extreme environment. A paper published June 26 in PLOS ONE details the thousands of species they identified through DNA and RNA sequencing.

What lies sealed beneath the glacial ice?

Antarctica, 35 million years ago, had a temperate climate and was inhabited by a diverse plants and animals. About 34 million years ago, a huge drop in temperature occurred and ice covered the lake, when it was probably still connected to the Southern Ocean. This lowered the sea level by about 100 metres, which could have cut off Lake Vostok from the ocean. The ice cover was intermittent until a second big plunge in temperature took place 14 million years ago, and sea level dropped even farther.

An artist's representation of the aquatic system scientists believe is buried beneath the Antarctic ice sheet. (Credit: Zina Deretsky, NSF)

An artist’s representation of the aquatic system scientists believe is buried beneath the Antarctic ice sheet. (Credit: Zina Deretsky, NSF)

As the ice crept across the lake, it plunged the lake into total darkness and isolated it from the atmosphere, and led to increasing pressure in the lake from the weight of the glacier. While many species probably disappeared from the lake, as indicated by Rogers’ results, some seem to have survived.

Rogers and his colleagues examined core sections from the ice above Lake Vostok that were extracted in 1998. At the time, no one had reached the actual lake, a feat that was achieved only last year. But the drilling had gone deep enough to reach a layer of ice at the bottom of the sheet that formed as lake water froze onto the bottom of the glacier where it meets the lake. The team sampled cores from two areas of the lake, the southern main basin and near an embayment on the southwestern end of the lake. The embayment appears to contain much of the biological activity in the lake.

Schematic cross-section of Lake Vostok (above), drawn to scale. (Credit: Yury M. Shtarkman et al.)

Schematic cross-section of Lake Vostok (above), drawn to scale. (Credit: Yury M. Shtarkman et al.)

By sequencing the DNA and RNA from the ice samples, the team identified thousands of bacteria, including some that are commonly found in the digestive systems of fish, crustaceans and annelid worms, in addition to fungi and two species of archaea, or single-celled organisms that tend to live in extreme environments. Other species they identified are associated with habitats of lake or ocean sediments. Psychrophiles, or organisms that live in extreme cold, were found, along with heat-loving thermophiles, which suggests the presence of hydrothermal vents deep in the lake. Rogers said the presence of marine and freshwater species supports the hypothesis that the lake once was connected to the ocean, and that the freshwater was deposited in the lake by the overriding glacier.

These results, however, are not without controversy.

Other claims and other lakes

Long before he began using these techniques to study the ice, Rogers and his team had developed a method to ensure purity. Sections of core ice were immersed in a sodium hypochlorite (bleach) solution, then rinsed three times with sterile water, removing an outer layer. Under strict sterile conditions, the remaining core ice was then melted, filtered and refrozen.

Sergey Bulat has doubts about the results, despite the careful sample preparation. Bulat, a Lake Vostok expert at the Petersburg Nuclear Physics Institute in Gatchina, Russia, is quoted as saying, “that it is very probably that the samples are heavily contaminated with tissue and microbes from the outside world.”

Quirin Schiermeier has noted in Nature News:

Bulat and Rogers have both studied Vostok ice samples taken in the 1990s by a consortium of Russian, French and US Antarctic researchers. In the past, the pair pondered a close collaboration. But their scientific relationship broke over enduring disagreement about the level of contamination of samples.

In March, Bulat himself faced criticism over an unknown species of bacterium his team had discovered in a Lake Vostok ice core drilled last year. Sceptics said that this finding was due to contamination from drilling fluid.

 Eric Cravens, assistant curator at the National Ice Core Laboratory in Littleton, Colo., holds up a piece of ice taken from above Lake Vostok, a remote region of Antarctica. The ice offers a glance at hundreds of thousands of years of geologic history. Melanie Conner/National Science Foundation


Eric Cravens, assistant curator at the National Ice Core Laboratory in Littleton, Colo., holds up a piece of ice taken from above Lake Vostok, a remote region of Antarctica. The ice offers a glance at hundreds of thousands of years of geologic history. (Photo credit: Melanie Conner/National Science Foundation).

The two researchers’ claims are probably the first in what will no doubt be an interesting period of discovery in Lake Vostok and other Antarctic lakes. The first samples of water from Lake Vostok itself, collected in early 2013 are currently being analysed. The Russian team has said that it hopes to have results within the next year. Bacteria, of known species, have been recovered from the smaller Antarctic Lakes, Whillans and Vida. Lake Vida has been sealed off for around 2,800 years. Ice cores drilled in 2005 and 2010 have recently revealed life, but at about one-tenth of the abundance usually found in freshwater lakes in moderate climate zones. Similarly in Lake Whillans the bacteria levels were roughly one-tenth the abundance of microbes in the oceans.

These results are glimpses into the the sub-glacial world of Antarctica. Glimpses that may change how we not only view this continent but also providing clues to how extra terrestrial life may exist on icy moons such as Jupiter’s Europa and Saturn’s Enceladus.

This article was first published here on Australian Science.

Be the first to comment
            

Pluto’s new moons named: Spock still homeless

Posted July 8, 2013 By Kevin Orrman-Rossiter
This image, taken by the NASA/ESA Hubble Space Telescope, shows five moons orbiting Pluto, the distant, icy dwarf planet (ESA/Hubble/AFP/Showalter)

This image, taken by the NASA/ESA Hubble Space Telescope, shows five moons orbiting Pluto, the distant, icy dwarf planet (ESA/Hubble/AFP/Showalter)

The dwarf planet, Pluto, can still generate public interest – if the naming of its two recently discovered moons is anything to go by. After their discovery, the leader of the research team, Mark Showalter, called for a public vote to suggest names for the two objects. The contest, aptly named ‘Pluto Rocks!‘, concluded with the Vulcan as the outright favorite, after a William Shatner led push by Star Trek fans. The proposed names Cerberus and Styx ranking second and third respectively.  The International Astronomical Union (IAU) has announced that the names Kerberos and Styx have officially been recognised for these fourth and fifth moons of Pluto. A decision that is probably correct, even if it proves not to be the most popular.

The moons of Pluto

The new moons were discovered in 2011 and 2012, during observations of the Pluto system made with the NASA/ESA Hubble Space Telescope. Their discovery increasing the number of known Pluto moons to five. Kerberos lies between the orbits of Nix and Hydra, two bigger moons discovered by Hubble in 2005, and Styx lies between Charon, the innermost and biggest moon, and Nix. Both have circular orbits assumed to be in the plane of the other satellites in the system. Kerberos has an estimated diameter of 13 to 34 kilometres, and Styx is thought to be irregular in shape and is 10 to 25 kilometres across.

Artist illustration of Pluto (centre) from one of its small moons. The largest moon Charon is on the right. Credit: NASA, ESA and G. Bacon (STScI)

Artist illustration of Pluto (centre) from one of its small moons. The largest moon Charon is on the right. Credit: NASA, ESA and G. Bacon (STScI)

The recent discoveries of the two small moons orbiting Pluto raise interesting new questions about how the dwarf planet formed. We now know that a total of four outer moons circle around a central “double-planet” comprising Pluto and its large, nearby moon Charon.

No home for Spock

The International Astronomical Union (IAU) is the arbiter of the naming process of celestial bodies, and is advised and supported by astronomers active in different fields. On discovery, astronomical objects receive unambiguous and official catalogue designations. When common names are assigned, the IAU rules ensure that the names work across different languages and cultures in order to support collaborative worldwide research and avoid confusion.

8933306274_6f2ec51e2c_bTo be consistent with the names of the other Pluto satellites, the names had to be picked from classical European mythology, in particular with reference to the underworld — the realm where the souls of the deceased go in the afterlife.  Showalter submitted Vulcan and Cerberus to the IAU where the Working Group for Planetary System Nomenclature (WGPSN) and the Committee on Small Body Nomenclature (WGSBN) discussed the names for approval.

After a final deliberation, the IAU Working Group and Committee agreed to change Cerberus to Kerberos — the Greek spelling of the word, to avoid confusion with an asteroid called 1865 Cerberus. According to mythology, Cerberus was a many-headed dog that guarded the entrance to the underworld. In keeping with the underworld theme the third most popular name was chosen — Styx, the name of the goddess who ruled over the underworld river, also called the Styx.

The IAU decided against the name Vulcan for a number of reasons: Vulcan had already been used for a hypothetical planet between Mercury and the Sun (although this planet was found not to exist), the term “vulcanoid” remains attached to any asteroid existing inside the orbit of Mercury, and finally Vulcan does not fit into the underworld mythological scheme. The Romans identified Vulcan with the Greek smith-god Hephaestus, and he became associated like his Greek counterpart with the constructive use of fire in metalworking.

In a press release the IAU  has stated that it:

wholeheartedly welcomes the public’s interest in recent discoveries, and continues to stress the importance of having a unified naming procedure following certain rules, such as involving the IAU as early as possible, and making the process open and free to all. Read more about the naming of astronomical objects here. The process of possibly giving public names to exoplanets (see iau1301), and more generally to yet-to-be discovered Solar System planets and to planetary satellites, is currently under review by the new IAU Executive Committee Task Group Public Naming of Planets and Planetary Satellites.

It all began with Galileo

Naming moons is not a new controversy. No sooner had telescopes been developed – improving on viewing the heavens by eye – and naming rights were contested. Galileo Galilei discovered the four largest moons of Jupiter sometime between 1609 and 1610. Galileo initially named his discovery the Cosmica Sidera (“Cosimo’s stars”) in the hope of gaining patronage from a former student of his the Grand Duke Cosimo II of Tuscany. He changed this to the “Medician Stars”, which would honor all four brothers in the Medici clan, in his 1610 book Sidereus Nuncius (The Starry Messenger). Their present names (lovers of the god Zeus (the Greek equivalent of Jupiter)) were suggested by Johannes Kepler, to Simon Marius, who had discovered the moons independently around the same time as Galileo. Marius published the names: Io, Europa, Ganymede and Callisto, in his Mundus Jovialis, in 1614   .

Charon's discovery as a time-varying bulge on the image of Pluto (seen near the top at left, but absent on the right). Photo credit NASA.

Charon’s discovery as a time-varying bulge on the image of Pluto (seen near the top at left, but absent on the right). Photo credit NASA.

Despite the firm hand of the IAU, naming even in the present day is still an art as much as a science. Charon was discovered in 1978 when astronomer James Christy noticed images of Pluto were strangely elongated. The direction of elongation cycled back and forth over 6.39 days – Pluto’s rotation period. Searching through their archives of Pluto images taken years before, Christy found more cases where Pluto appeared elongated. Additional images confirmed he had discovered the first known moon of Pluto. Christy proposed the name Charon after the mythological ferryman who carried souls across the river Acheron, one of the five mythical rivers that surrounded Pluto’s underworld. Apart from the mythological connection for this name, Christy chose it because the first four letters also matched the name of his wife, Charlene.

New Horizons, Pluto and the Kuiper Belt

Pluto’s origin and identity has long puzzled astronomers. Orbiting at a distance of between 4.4–7.4 billion kilometres from the Sun it has proved difficult to investigate.  Pluto’s true place in the Solar System began to reveal itself only in 1992, when astronomers began to find small icy objects beyond Neptune that were similar to Pluto not only in orbit but also in size and composition. Astronomers now believe Pluto to be the largest member of the Kuiper belt, a somewhat stable ring of objects located between 30 and 50 AU from the Sun. Though Pluto is the largest of the Kuiper belt objects discovered so far, Neptune’s moon Triton, which is slightly larger than Pluto, is similar to it both geologically and atmospherically, and is believed to be a captured Kuiper belt object

The excitement for Pluto and its moons will be heightened in 2015 when NASA’s New Horizons spacecraft makes a flyby and then continues on to study the Kuiper belt objects in 2016-2020. It has already been suggested by Showalter that some of the names from the Pluto Rocks list, as well as some from Star Trek, may well names of craters and mountains, revealed on Pluto by New Horizons – this story is far from over.

This story originally published on Australian Science.

1 Comment. Join the Conversation
            

When a mind goes awry

Posted June 22, 2013 By Kevin Orrman-Rossiter

fractured_state_of_mind_44cv

Trouble in Mind (Jenni Ogden, Scribe, $32.95, ISBN 9781922070562, July 2013)

I do not think I would be alone in fearing ‘losing my mind’. Even the common expression, “are you out of your mind?” gives solid form to what may seem a merely philosophical train of thought. At any given time most people will declare confidently that “I am in my ‘right mind’ and point to themselves as that ‘I’. The quandary is the ‘I’ of age eight is different to the ‘I’ of forty-eight; despite the continuity of of ‘I’ joining these two for example. Our mind then is one of those puzzling concepts at once both familiar and ephemeral.  To lose ones mind, though, even partially, through trauma, disease, or disorder we would all agree is to lose some quintessential part of us. Trouble In Mind is a collection of real stories about people who have suffered just that – losing part of their minds.

The stories are from patients that the neuropsychologist author, Jenni Ogden, has worked with over her career in New Zealand, the USA, and Australia. Ten of the 15 patients portrayed in this book featured in Ogden’s 2005 textbook Fractured Minds. Trouble in Mind is neither text, nor assessment, nor treatment book. There are other books on the market that describe patients with a variety of neurological conditions. Many written by clinicians such as Ogden. Most I find fall short because the clinician writer is excited by the condition and fails to connect the human to that condition. In other examples non-clinicians often focus complete cures, without any reference to the many that underwent similar treatments – without success.

Ogden’s stories succinctly and clearly explain the medical conditions and engagingly present the human side of each in an empathetic and nuanced style. Whether talking about patients with car-crash brain trauma, rugby-induced concussion or suffering from Parkinson’s disease Ogden covers the personal, social and family elements with clarity that is often missing in clinical based non-fiction written by clinicians. In this respect Ogden writes with feeling like that of psychologist Oliver Sacks at his best.

These are stories that will have a resonance with most in our society. Three in particular I will mention as way of illustration of the breadth covered. Michael was a 24-year old motorcycle maniac. After a horrific accident, he left the critical care unit with a virtually ignored head injury; the surgeons had grappled with keeping him alive and the extensive orthopedic surgeries and specialist care.  neither he nor his doctors realised that he was cortically blind. This resolved itself after two years – leaving him with object agnosia – the inability to recognise what he was seeing. Ogden then describes he many years work with Michael, his trials, tribulations and treatments to living 24 years later is a life with a most interesting disability. Amongst this we also get Ogden’s motivation – her clinician’s ‘delight’ in being asked to work with such an unusual case. Yes her delight, her excitement; those real human emotions not hidden behind neutral, banal psychology speak.

In another chapter Ogden looks at the bizarre neuropsychological disorder of hemineglect – ignoring visual stimuli in the side of space opposite to the side of their brain that is damaged. In this case though the patient is a chirpy 50 year-old female, Janet. The chapter is fascinating and the description of janet’s sessions with Ogden are sometimes, well, hilarious. But this is real-life not Hollywood. Janet’s hemineglect is caused by a brain tumor. Janet dies, four long and difficult years following her diagnosis. Ogden doesn’t just end the chapter, she humanely discusses the impact on Janet’s husband and close family and friends of her treatment and death. She also assesses the effectiveness of the treatments, looking at other cases, from her own and others’ casebooks.

The final chapter is aptly called “The Long Goodbye: coming to terms with Alzheimer’s disease.” This chapter follows Sophie’s diagnosis and cognitive decline from Alzheimer’s disease. I learnt a lot about the disease from reading this chapter. I equally learnt how it would be to watch a person who “was once active, independent, intelligent, humorous and loving gradually lose her mind”.

This collection of stories is eminently readable. I  recommend it to readers with either; a specific, perhaps personal, topic of interest or those more generally who are curious and interested in how our minds work, particularly when they go awry due to damage to that squishy grey organ inside our skull.

Be the first to comment
            

Another step in China’s ‘Long March’ into space

Posted June 16, 2013 By Kevin Orrman-Rossiter
Shenzhou 10 crew

Shenzhou 10 crew ready to board their craft.

The colorful and polished launch of Shenzhou 10 confirms that China has come of age as a spacefaring nation.  At 19:40 AEST on Tuesday June 11 (17:40 local time) three ‘yuhangyuan’, Chinese astronauts, embarked on China’s sixth crewed space mission. This second mission to Tiangong 1, the Chinese space station, is a credible step in mastering the art and engineering of space exploration. It was also a public relations success.

Shenzhou 10 crew

Announcing in early April, that Wang Yaping, a 35 year old Major in the PLA Air Force, was one of the 3-person Shenzhou 10 crew, silence then descended on the identity of the other crew members. Wang was named as the in-flight instructor. She becomes China’s second female and 9th astronaut to have flown.

Building the suspense the Chinese finally announcing the other two the names of the three person crew yesterday. Along with Wang the Shenzhou 10 crew are: Nie Haisheng (48) Commander of Shenzhou 10, a veteran of Shenzhou 6 in 2005, and a Major General in PLA Air Force, and Zhang Xiaoguang, 47 Assistant Pilot of Shenzhou 10, backup crew of Shenzhou 9 (along with Wang) and a Senior Colonel of PLA Air Force.

This places the Chinese astronaut corps as a modern, relatively, gender balanced operation. Zhang and Nie both hale from the 1996 second astronaut selection. As have all male yuhangyuan to date including Yang Liwei, China’s first astronaut. The first group of astronauts were selected in 1971 in a hopelessly ambitious and quickly abandoned attempt to put astronauts into space in the 1970s. Wang, along with Liu Yang, China’s first female yuhangyuan, comes from China’s 2010 third group of yuhangyuan. The Chinese, at least to the outside world, have not followed the more memorable and colourful NASA lead of allowing astronaut groups to pick their nick-names.

The heavenly palace

With the launch a success, Nie will now chase, rendezvous and dock with an orbital laboratory, Tiangong (a mandarin word meaning “heavenly palace”), which was launched nearly two years ago on September 29, 2011.On November 2, 2011 China successfully docked the unmanned Shenzhou 8 with Tiangong. It remained docked for 14 days and then undocked and repeated the docking maneuver – proof that the first was not a fluke. It then was undocked, leaving Tiangong to its solitary orbit 370km above the earth’s surface.

Shenzhou 10 launched

Shenzhou 10 successfully on its way.

On June 18, 2012 a second craft docked with Tiangong. This time it was the crewed Shenzhou 9. The space station was then declared operational. China had joined Russia and the USA in having the capability to become space residents. The three person crew on Tiangong conducted experiments and aclimatised to the prolonged weightlessness for their 10 day mission.

The normal pattern was for two to sleep in Tiangong and one to sleep in Shenzhou. At only 10.4m in length, Shenzhou is smaller than the 1971 Russian Salyut (13.1m) and the 1973 US Skylab (36.1m) space laboratories. Like these other first space laboratories Tiangong is designed with a limited lifespan. The current mission, Shenzhou 10, will be the last to Tiangong 1.

Shenzhou 10

As is the norm now the Shenzhou launch was covered live by the Chinese media. providing pictures, expert commentary and graphics depicting what was going on at the various stages of the launch. Shenzhou 10 is now safely in orbit and will spend the next few days approaching a suitable orbit for docking. The Shenzhou 10 will dock with the orbiting lab module Tiangong 1 several times.

Shenzhou 10 interior

The view inside the cabin during launch and the view of the Earth from the outside camera. The Chinese provided high quality visuals and coverage of this launch.

“The three astronauts will stay in orbit for 15 days, including 12 days when they will work inside the coupled complex of the Shenzhou 10 and Tiangong 1,” said Zhou Jianping, head designer of China’s manned space program. It is expected that they will set a Chinese record for time in orbit.

The interesting point is that the mission profile for Shenzhou 10 is opaque. Although it is expected that the craft will be put through it’s docking paces – not something to be dismissed lightly – the scientific and engineering goals of this mission are less obvious that the recent Shenzhou missions.

As the in-flight instructor Wang will give lectures to middle and elementary school students from orbit. This could be seen as mimicry of recent astronauts on the International Space Station; the everyday science experiments of Don Pettit and most recently Chris Hadfield. These were experiments designed by US High School students and carried out in space by the astronauts. What Wang will demonstrate and whether it will be released to the West are at present questions – without answers.

This will be the last Chinese human space mission for quite some time. The next Shenzhou missions are expected to fly to the Tiangong 2 laboratory. This will be an expanded version of Tiangong 1, similar in design to the Russian 1986 Mir space station. It is expected to be able to sustain 20-day visits. It will probably not be launched until around 2015 or possibly later. The gap between the flight of Shenzhou 10 and Shenzhou 11 could ultimately prove to be the longest hiatus in Chinese human spaceflight to date.

Regional implications

How will the Chinese promote this current mission once it is completed? Its success, or otherwise, will not necessarily aid any military space activities, nor directly any Chinese commercial space activities. It does provide a compelling message, I suggest, to its regional competitors. Human exploration is possibly the most expensive and prestigious space activity. I think we will find China promoting this expedition to its fullest. It has large domestic appeal: pride in national achievement as well as motivating and driving high technology industry development. From the perspective of an “Asian Space race” China has an audacious program of robotic missions to the Moon over the next few years. Fully intending to continue its long march to put humans onto the Moon and Mars in the next few decades.

This was first published on Australian Science.

Shenzhous 10 in orbit

Shenzhou 10 in orbit.

Be the first to comment
            

Explainer: the International Space Station

Posted April 25, 2013 By Kevin Orrman-Rossiter

w68g9gb8-1366697618As the most visible man-made object in the night sky the International Space Station (ISS) is of significance to humankind. It takes humans from being explorers of space to being residents of space.

The Russians launched Zarya, the first module of the ISS, on November 20, 1998. It has grown considerably since then and has been continuously inhabited since November 2, 2000.

Some 208 individuals from 35 expeditions have visited it since then. It’s the ninth space station to be inhabited, following the Salyut (and Almaz), Skylab and Mir stations.

Science and the space station

The ISS fulfils three broad research roles: space medicine, Earth and solar studies, and microgravity experiments.


The Zarya module. Wikimedia Commons

Understanding the response of the human body to low and microgravity is critical for space exploration. Astronauts undergoing long periods of weightlessness – such as in flights to and from Mars – will need to understand the impact of this on their ability to carry out tasks, both routine and emergency.

The space station provides an ideal environment to study many aspects of humans in space, including: balance, digestion, muscle and bone retention and heart behaviour.

It also provides a unique window on the earth and sun – one in which scientists can use their understanding to respond to opportunities as they arise as well as conduct scheduled experiments and observations.

As a solar observatory, the space station is clear of Earth’s atmosphere, giving a unique perspective on terrestrial weather and atmospheric science.


What happens if you wring out a wet cloth in microgravity?

The four laboratory sections house experiments selected on their scientific merit or educational and industrial interest. These include understanding how microgravity effects animal and plant growth, and understanding and developing novel industrial processes.

One of the main “big science” experiments on the space station is the alpha magnetic spectrometer (AMS) – an instrument designed to search for dark matter.

The AMS has been in operation and collecting data since June 27, 2011 and has an expected operational lifetime in excess of ten years.

The International Space Station with the Endeavour Space Shuttle docked, along with descriptions of each section of the station. NASA

A tour of the International Space Station

Approaching the the Rassvet dock in your Soyuz spacecraft, you realise just how big and frail the space station is.

Its most visible features are the eight solar arrays. They generate 84 kilowatts of power and have a wingspan of 73 metres, wider than a Boeing 777. They, along with the array of habitable modules, are supported by a central truss.


An hour-long tour of the ISS.

As you dock you can see nearby the Russian crew’s Soyuz craft docked at Poisk. At the other end, on the Harmony node, is a newly captured SpaceX Dragon supply ship.

Through the cramped airlock you enter the Zarya module. After taking a moment to orient yourself in this weightless environment, you proceed down a circular tunnel to the Zvezda service module.

This is the space station control and services centre, containing the Russian guidance and navigation computers.

It’s also the sleeping and hygiene quarters for two of the cosmonauts. In an emergency it can support all six of the crew.

Back through Zarya you’ll come to the US-built Unity node, a galley where it is possible for all the crew to gather and eat together.

Mealtime in the Unity node. NASA

Just off from this is the Italian-built Tranquility node, which is multi-purpose – with storage, berthing and habitation facilities. It houses the ESA-built observatory, the Cupola.

With its six side windows and a top window the Cupola gives observers a Millenium Falcon-type view of Earth below.

You wind your way back to Unity then through the truss structure (that supports the solar arrays and the Canadarm2) to the Destiny Laboratory – the primary US research facility. Continuing on from here, you reach Harmony.

You note the Destiny and Harmony nodes are square, rather than round like the older modules. This gives four usable working “walls” – there is no up or down, so no floor or ceiling.

Besides velcroing objects to every available “wall” space, the next noticeable thing is the total absence of chairs.

Harmony is home to four crew. The sleeping berths radiate into each “wall”. Each is about the size of a phone booth and have a sleeping bag-type arrangement as well as computer and space for personal effects.

NASA astronauts Ron Garan (bottom) and Cady Coleman, European Space Agency astronaut Paolo Nespoli (left) and Russian cosmonaut Alexander Samokutyaev, all Expedition 27 flight engineers, pose for a photo in the Harmony node of the International Space Station. NASA

Sleeping on the ISS is a novel experience. The station orbits Earth every 90 minutes, which means there is a sunrise and sunset every hour and a half.

The Harmony node also houses sanitary (yes, that is your toothbrush and toothpaste velcroed to the wall) and exercise facilities. A treadmill, gym and seatless exercise bike are part of the necessary exercise regime to ensure muscle does not waste away in the microgravity environment of the space station.

Off Harmony are the Japanese Kibo and European Columbus laboratories.

And … that’s it! This is your world for the next six months, all 388 cubic metres of it – about half the interior space of a Jumbo jet.

The international space residents

The first expedition of William Shepherd (US), Yuri Gidzenko (Russia) and Sergei Krikalev (Russia) was launched on a Russian Soyuz on October 31, 2000 and returned on the space shuttle Discovery on March 21, 2001.

Expedition #35 crew. NASA.

At the moment, the ISS is hosting a six-person expedition, #35. Current commander Chris Hadfield (Canada) and flight engineers Tom Marshburn (US) and Roman Romanenko (Russia) docked on December 21, 2012.

Robonaut 2, or R2, the first humanoid robot to travel to space and the first US-built robot to visit the space station, performs a few finger motion and sensor checkouts aboard the ISS. NASA

Chris Cassidy (US), Alexander Misurkin (Russia), and Pavel Vinogradov (Russia), also flight engineers, docked on March 28, this year, replacing then-commander Kevin Ford (US) and flight engineers Oleg Novitskiy (Russia) and Evgeny Tarelkin (Russia).

You can watch the ISS crew live when they’re on duty.

Expedition #35 is an all-male crew, but 31 women have flown to the space station – including Expedition 16 commander Peggy Whitson, the station’s first female commander. In all, there have been nationals from 15 countries, including seven tourists.

International co-operation

In the Memorandum of Understanding between NASA and Roscosmos, the ISS is to provide for a variety of capabilities, such as

  • a laboratory in space, for the conduct of science and applications and the development of new technologies
  • a permanent observatory in high-inclination orbit, from which to observe Earth, the Solar System and the rest of the Universe
  • a transportation node where payloads and vehicles are stationed, assembled, processed and deployed to their destination
  • a servicing capability from which payloads and vehicles are maintained, repaired, replenished and refurbished
  • an assembly capability from which large space structures and systems are assembled and verified
  • a research and technology capability in space, where the unique space environment enhances commercial opportunities and encourages commercial investment in space
  • a storage depot for consumables, payloads and spares
  • a staging base for possible future missions, such as a permanent lunar base, a human mission to Mars, robotic planetary probes, a human mission to survey the asteroids, and a scientific and communications facility in geosynchronous orbit

In the 2010 US National Space Policy, the ISS was given additional roles of serving commercial, diplomatic and educational purposes.

The ISS has acted as an example and vehicle for international co-operation, but the US has vetoed China’s participation. China, as a result, is now pursuing its own space laboratory program.

The first of these, Tiangong-1, is in orbit and has docked with Shenzou-9, but is still to be inhabited.

Where to?

The US Administration will fund the ISS until 2020. With continued interest from the international community, the space station should continue as a vehicle for fruitful science and demonstration of international co-operation for at least this decade.

The development of commercial spacecraft also provides a second string to the station’s future. SpaceX has demonstrated its capability to deliver cargo and possibly crew to supplement the ageing Russian Soyuz capability.

Only time will tell whether the US allows the addition of China and India, Asia’s space-capable nations, to the ISS fraternity.

Kevin Orrman-Rossiter does not work for, consult to, own shares in or receive funding from any company or organisation that would benefit from this article, and has no relevant affiliations.

The Conversation

This article was originally published at The Conversation.
Read the original article.

Be the first to comment
            

Do animals have minds?

Posted April 24, 2013 By Kevin Orrman-Rossiter

Animal Wise: the thoughts and emotions of our fellow creatures, by Virginia Morell, Black Inc. Books, 2013.

Photo credit BBC.

Photo credit BBC.

Laughing rats, name-calling wild parrots, archer-fish with a sense of humour, and educated ants; the naturalist Charles Darwin would have loved this book. The philosopher Rene Descartes would equally have found it deeply troubling. Both with good reason.

In Descartes’ dualist philosophy the mind and body are two separate entities. There is the material body and the immaterial mind or soul. The latter linking humans to the mind of God, making us, in his philosophy, different to animals. Descartes famously reasoned animals are composed only of material substances and therefore have no capacity to reason. More importantly for how we see animals, Descartes wrote that a human person, such as you or I, is something distinct from that person’s body. Therefore an animal, being material only, could in this way of thinking, never have a mind – never have a concept of “I”.

This stance was extended by the behaviorist paradigms of the mid 20th century associated with the psychologist B F Skinner.

Darwin on the other hand thought differently. He was a natural philosopher who got up out of his armchair and voyaged the world, most notably aboard the Beagle. Darwin attributed emotions to many animals and even argued that earthworms are cognitive beings. In his classic The Descent of Man he argued, most persuasively, that we and the other animals differ in our mental powers by degree, not in kind.

Today the discussion is no different, researchers still debate not only advanced claims of intelligence in animals but also how to test whether their abilities reflect human-like cognition.

This brings me to what I liked so much about this book.

An archer-fish demonstrating its uncanny aim. Photo credit BBC.

An archer-fish demonstrating its uncanny aim. Photo credit BBC.

Each chapter focuses on an animal in a particular observational or experimental setting. Virginia Morell introduces us to the scientist and the animals, explaining the studies, the results and some of the trials and triumphs along the way to building an understanding of what the scientists find. The animal and settings we may already have a prejudice about; captive dolphins, elephant memories, chimpanzees and language, dogs and humans, are very carefully presented to ensure that the most compelling results are well presented. The more novel animals, ants and fish for example, are also carefully presented, their novelty makes for an easier presentation. For example I had no preconceived ideas regarding the ability of ants to teach – with no mental hurdle of my to overcome – that chapter was very illuminating. The examples and researchers chosen for these chapters succinctly illustrate what we have learnt about the emotions and intelligence of these animals.

Yes I did say chosen. It does not pretend, nor claim to be, encyclopaedic, academic nor ‘balanced’ presentation of the entire field. This is a lively, non-fiction tour of the cutting edge of animal cognitive science. Virginia Morell translates the scientific jargon of the field into words that all can engage with.

Each chapter is a separate story, reflecting that some of the chapters were adapted from previously published articles from 2008 to 2012. These are neatly book-ended with chapter that frame these quite succinctly. This I think is a strength of the book. Each chapter, each story, is self-contained that you can read it, look at the references and ponder what the researchers and Virginia are conveying to you. Not only do you get an appreciation of the scientific significance of the various studies – you get that rare glimpse into the scientific process and personality that is often missed in science communication writing.

For example, consider the archer-fish and neuroscientist Stefan Schuster. I learnt that Stefan has spent more than forty years investigating how fish think and make decisions. I learnt that the idea of seeing life from the mind of a fish was something that grabbed him as a child. Stefan’s story is more than just his careful experimentation on fish behaviour. Along the way he has made key discoveries about the sophisticated mental abilities of the archer-fish. The archer-fish is well-named for it is the sharpshooter of the piscine world.

In the chapter discussing his work I learnt that Schuster owes his success to curiosity, fun and serendipity – as well as careful experimentation. Schuster and his students had discovered that archer-fish learnt how to shoot at difficult and novel targets by watching another skilled fish perform the task. That means they had taken the viewpoint of the other fish. Did they copy or imitate? Let the philosophers debate the definitions. What the archerfish do involves cognition. Although we don’t understand the relationship between cognition and sentience, scientists know that one informs the other.

Each chapter is replete with great stories, good science and probing philosophy. Morell displays her ability to write engagingly for a general audience, while presenting the science at a suitably intriguing level. If you view animals the same after reading this book – then give it a second read – it will be worth it.

I’ll leave the last words to the late Douglas Adams:

Man had always assumed that he was more intelligent than dolphins because he had achieved so much – the wheel, New York, wars and so on – while all the dolphins had ever done was muck about in the water having a good time. But conversely, the dolphins had always believed that they were far more intelligent than man – for precisely the same reasons.

 

Be the first to comment
            

Kepler meets Einstein: a gravity-bending feat

Posted April 13, 2013 By Kevin Orrman-Rossiter
tumblr_inline_mkrc61klmq1qz4rgp

An artist’s concept depicts a dense, dead star called a white dwarf crossing in front of a small, red star. The white dwarf’s gravity is so great that it bends and magnifies light from the red star, causing it to appear bigger than it really is. (Credit: NASA/JPL-Caltech)

NASA’s Kepler space telescope has witnessed the effects of a dead star bending the light of its companion star. The findings are among the first detections of this phenomenon — a prediction of Einstein’s general theory of relativity — in binary, or double, star systems.

The dead star, called a white dwarf, is the burnt-out core of what used to be a star like our sun. It is locked in an orbiting dance with its partner, a small “red dwarf” star. While the tiny white dwarf is physically smaller than the red dwarf, it is more massive.

This white dwarf is about the size of Earth but has half the mass of the sun. It’s so hefty that the red dwarf, of roughly the same mass though 50 times larger in diameter (about half our sun’s diameter), is circling around the white dwarf. These findings are to be published April 20, in the Astrophysical Journal.

Kepler’s role

The Kepler space telescope’s primary job is to scan stars in search of orbiting planets. As the planets pass by, they block the starlight by miniscule amounts, which Kepler’s sensitive detectors can see.

“The technique is equivalent to spotting a flea on a light bulb 3,000 miles away, roughly the distance from Los Angeles to New York City,” said Avi Shporer, co-author of the study.

Muirhead and his colleagues regularly use public Kepler data to search for and confirm planets around smaller stars, the red dwarfs, also known as M dwarfs. These stars are cooler and redder than our yellow sun. When the team first looked at the Kepler data for a target called KOI-256 (Kepler Object of Interest), they thought they were looking at a huge gas giant planet eclipsing the red dwarf.

“We saw what appeared to be huge dips in the light from the star, and suspected it was from a giant planet, roughly the size of Jupiter, passing in front,” said Muirhead.

image

This chart shows data from NASA’s Kepler space telescope. The plot on the left shows data collected by Kepler for a star called KOI-256, which is a small red dwarf. At first, astronomers thought the dip in starlight was due to a large planet passing in front of the star. But certain clues, such as the sharpness of the dip, indicated it was actually a white dwarf. In fact, in the data shown at left, the white dwarf is passing behind the red dwarf, an event referred to as a secondary eclipse. The change in brightness is a result of the total light of the system dropping.
The plot on the right shows what happens when the white dwarf passes in front of, or transits, the star. The dip in brightness is incredibly subtle because the white dwarf, while just over half as massive as our sun, is only the size of Earth, much smaller than the red dwarf star. The blue line shows what would be expected given the size of the white dwarf. The red line reveals what was actually observed: the mass of the white dwarf is so great, that its gravity bent and magnified the light of the red star. Because the star’s light was magnified, the transiting white dwarf blocked an even smaller fraction of the total starlight than it would have without the distortion. This effect, called gravitational lensing, allowed the researchers to precisely measure the mass of the white dwarf. (Image credit: NASA/Ames/JPL-Caltech)

To learn more about the star system, Muirhead and his colleagues turned to the Hale Telescope at Palomar Observatory near San Diego. Using a technique called radial velocity, they discovered that the red dwarf was wobbling around like a spinning top. The wobble was far too big to be caused by the tug of a planet. That is when they knew they were looking at a massive white dwarf passing behind the red dwarf, rather than a gas giant passing in front.

The team also incorporated ultraviolet measurements of KOI-256 taken by the Galaxy Evolution Explorer (GALEX), a NASA space telescope now operated by the California Institute of Technology in Pasadena. The GALEX observations, led by Cornell University, Ithaca, N.Y., are part of an ongoing program to measure ultraviolet activity in all the stars in Kepler field of view, an indicator of potential habitability for planets in the systems. These data revealed the red dwarf is very active, consistent with being “spun-up” by the orbit of the more massive white dwarf.

The astronomers then went back to the Kepler data and were surprised by what they saw. When the white dwarf passed in front of its star, its gravity caused the starlight to bend and brighten by measurable effects.

“Only Kepler could detect this tiny, tiny effect,” said Doug Hudgins, the Kepler program scientist at NASA Headquarters, Washington. “But with this detection, we are witnessing Einstein’s general theory of relativity at play in a far-flung star system.”

One of the predictions of Einstein’s general theory of relativity is that gravity bends light. Astronomers regularly observe this phenomenon, often called gravitational lensing, in our galaxy and beyond. For example, the light from a distant galaxy can be bent and magnified by matter in front of it. This reveals new information about dark matter and dark energy, two mysterious ingredients in our universe.

Gravitational lensing has also been used to discover new planets and hunt for free-floating planets.

In the new Kepler study, scientists used the gravitational lensing to determine the mass of the white dwarf. By combining this information with all the data they acquired, the scientists were also able to measure accurately the mass of the red dwarf and the physical sizes of both stars. Kepler’s data and Einstein’s theory of relativity have together led to a better understanding of how binary stars evolve.

Be the first to comment
            

New light on dark matter: space station magnet attracts praise

Posted April 4, 2013 By Kevin Orrman-Rossiter

qqtyppyd-1365030919By Kevin Orrman-Rossiter, University of Melbourne

Nobel prizewinner Samuel Ting, early this morning (AEDT), announced the first results from the Alpha Magnetic Spectrophotometer (AMS) search for dark matter. The findings, published in Physical Review Letters, provide the most compelling direct evidence to date for the existence of this mysterious matter.

In short, the AMS results have shown an excess of antimatter particles within a certain energy range. The measurements represent 18 months of data from the US$1.5 billion instrument.

The AMS experiment is a collaboration of 56 institutions, across 16 countries, run by the European Organisation for Nuclear Research (CERN). The AMS is a giant magnet and cosmic-ray detector complex fixed to the outside of the International Space Station (ISS).

Dark matter matters

The visible matter in the universe, such as you, me, the stars and planets, adds up to less than 5% of the universe. The other 95% is dark, either dark matter or dark energy. Dark matter can be observed indirectly through its interaction with visible matter but has yet to be directly detected.

Cosmic rays are charged high-energy particles that permeate space. The AMS is designed to study them before they have a chance to interact with Earth’s atmosphere.

The AMS explained.

An excess of antimatter within the cosmic rays has been observed in two recent experiments – and these were labelled as “tantalising hints” of dark-matter decay.

One possibility for the excess antimatter, predicted by a theory known as supersymmetry, is that positrons (antimatter electrons) could be produced when two particles of dark matter collide and annihilate.

Assuming that dark matter is evenly distributed, these theories predict the newly reported observations.

But the AMS measurement cannot yet entirely rule out the alternative explanation that the positrons originate from pulsars (rotating neutron stars) distributed around the galactic plane.

Supersymmetry theories also predict a cut-off at higher energies above the mass range of dark matter particles, and this has not yet been observed. Over the coming years, the AMS will further refine the measurement’s precision, and clarify the behaviour of the positron fraction at higher energies.

Ting’s thing

The AMS idea dates back to 1994. At that time NASA was desperate to develop a “sexy” science project that would endear the US scientific community to the ISS.

The AMS hitches a ride to the ISS in 2011. NASA

Enter Ting and his idea of a space-borne magnet that would sift matter and antimatter.

By 1995 Ting had NASA’s agreement. The US Department of Energy would fund the detector, and NASA would provide space on the ISS and a shuttle to fly it there. Ting would obtain the foreign involvement needed to build the instrument.

By 2008 the detector was complete but the shuttle flight schedule was a shambles. With delays after the 2003 Columbia disaster and the probable 2010 retirement of the shuttles, no flights were available to deliver the device to the space station.

Ting persisted and, through lobbying, got Congress to authorise one more shuttle flight, STS-134 – the second last ever.

On May 16, 2011 the final flight of NASA’s youngest shuttle, Endeavour, the spectrophotometer was launched. It has been in operation and collecting data since June 27, 2011 and has an expected operational lifetime in excess of 10 years.

Antimatter matters

There is a second scientific aim of the AMS. Experimental evidence indicates that our galaxy is made of matter. But the Big Bang theory assumes equal amounts of matter and antimatter were present at the origin of the universe.

So what happened to all the antimatter? The observation of just one antihelium nucleus would provide evidence for the existence of a large amount of antimatter somewhere in the universe.

With a sensitivity three orders of magnitude better than previous experiments, the Alpha Magnetic Spectrophotometer will be searching for the existence of this primordial antimatter.

Amazingly we have come to recognise that we know little about what makes up 95% of our universe.

Today’s AMS results mark a precision start to an audacious experiment to redress that ignorance.

Kevin Orrman-Rossiter does not work for, consult to, own shares in or receive funding from any company or organisation that would benefit from this article, and has no relevant affiliations.

The Conversation

This article was originally published at The Conversation.
Read the original article.

Be the first to comment
            
This artist's conception illustrates the brown dwarf named 2MASSJ22282889-431026. NASA's Hubble and Spitzer space telescopes observed the object to learn more about its turbulent atmosphere. Brown dwarfs are more massive and hotter than planets but lack the mass required to become sizzling stars. Their atmospheres can be similar to the giant planet Jupiter's. Spitzer and Hubble simultaneously observed the object as it rotated every 1.4 hours. The results suggest wind-driven, planet-size clouds. Image credit: NASA/JPL-Caltech

This artist’s conception illustrates the brown dwarf named 2MASSJ22282889-431026. NASA’s Hubble and Spitzer space telescopes observed the object to learn more about its turbulent atmosphere. Image credit: NASA/JPL-Caltech

Long distance weather reports are now a commonality. The report for 2MASSJ22282889-431026 is somewhat unusual. It forecasts wind-driven, planet-sized clouds, with the light varying in time, brightening and dimming about every 90 minutes. The clouds on 2MASSJ22282889-431026 are composed of hot grains of sand, liquid drops of iron, and other exotic compounds. Definitely not the first place to spend a summer holiday.

Not that 2MASSJ22282889-431026 (or 2M2228 as it is known in The Astrophysical Journal Letters) will appear on a travel itinerary anytime soon. For 2M2228 is a brown dwarf, 39.1 light years from earth. Brown dwarves form out of condensing gas, as stars do, but lack the mass to fuse hydrogen atoms and produce energy. Instead, these objects, which some call failed stars, are more similar to gas planets, such as Jupiter and Saturn, with their complex, varied atmospheres. Although brown dwarves are cool relative to other stars, they are actually hot by earthly standards. This particular object is about 600 to 700 degrees Celsius.

The atmosphere of 2M2228

Astronomers using NASA’s Spitzer and Hubble space telescopes have probed the stormy atmosphere of this brown dwarf, creating the most detailed “weather map” yet for this class of cool, star-like orbs. “With Hubble and Spitzer, we were able to look at different atmospheric layers of a brown dwarf, similar to the way doctors use medical imaging techniques to study the different tissues in your body,” said Daniel Apai, the principal investigator of the research at the University of Arizona in Tucson.

But more surprising, the team also found the timing of this change in brightness depended on whether they looked using different wavelengths of infrared light.

This artist's illustration shows the atmosphere of a brown dwarf called 2MASSJ22282889-431026, which was observed simultaneously by NASA's Spitzer and Hubble space telescopes. The results were unexpected, revealing offset layers of material as indicated in the diagram. For example, the large, bright patch in the outer layer has shifted to the right in the inner layer. The observations indicate this brown dwarf -- a ball of gas that "failed" to become a star -- is marked by wind-driven, planet-size clouds. The observations were made using different wavelength of light: Hubble sees infrared light from deeper in the object, while Spitzer sees longer-wavelength infrared light from the outermost surface. Both telescopes watched the brown dwarf as it rotated every 1.4 hours, changing in brightness as brighter or darker patches turned into the visible hemisphere. At each observed wavelength, the timing of the changes in brightness was offset, or out of phase, indicating the shifting layers of material. Image credit: NASA/JPL-Caltech

This artist’s illustration shows the atmosphere of the brown dwarf 2M2228. The results were unexpected, revealing offset layers of material as indicated in the diagram. For example, the large, bright patch in the outer layer has shifted to the right in the inner layer. The observations were made using different wavelength of light: Hubble sees infrared light from deeper in the object, while Spitzer sees longer-wavelength infrared light from the outermost surface. Both telescopes watched the brown dwarf as it rotated every 1.4 hours, changing in brightness as brighter or darker patches turned into the visible hemisphere. At each observed wavelength, the timing of the changes in brightness was offset, or out of phase, indicating the shifting layers of material. Image credit: NASA/JPL-Caltech

These variations are the result of different layers or patches of material swirling around the brown dwarf in windy storms as large as Earth itself. Spitzer and Hubble see different atmospheric layers because certain infrared wavelengths are blocked by vapors of water and methane high up, while other infrared wavelengths emerge from much deeper layers.

The new research is a stepping-stone toward a better understanding not only of brown dwarves, but also of the atmospheres of planets beyond our solar system.

Into the red: the Spitzer space telescope

The Spitzer Space Telescope is the final mission in NASA’s Great Observatories Program – a family of four space-based observatories, each observing the Universe in a different kind of light. The other missions in the program include the visible-light Hubble Space Telescope, Compton Gamma-Ray Observatory, and the Chandra X-Ray Observatory.

The Spitzer Space Telescope consists of a 0.85-meter diameter telescope and three cryogenically-cooled science instruments which perform imaging and spectroscopy in the 3 – 180 micron wavelength range. Since infrared is primarily heat radiation, detectors are most sensitive to infrared light when they are kept extremely cold. Using the latest in large-format detector arrays, Spitzer is able to make observations that are more sensitive than any previous mission. Spitzer’s mission lifetime requirement was 2.5 years, then extended this to 5-years. Spitzer .

Launched on August 25, 2003 Spitzer is now more than 9 years into its mission, and orbits around the sun more than 100-million kilometers behind Earth. It has heated up just a bit – its instruments have warmed up from -271 Celsius to -242 Celsius. This is still way colder than a chunk of ice at 0 Celsius. More importantly, it is still cold enough for some of Spitzer’s infrared detectors to keep on probing the cosmos for at least two more years; the project funding has been extended to 2016.

Spitzer seen against the infrared sky. The band of light is the glowing dust emission from the Milky Way galaxy seen at 100 microns (as seen by the IRAS/COBE missions). Image credit NASA/JPL

Spitzer seen against the infrared sky. The band of light is the glowing dust emission from the Milky Way galaxy seen at 100 microns (as seen by the IRAS/COBE missions). Image credit NASA/JPL

Spitzer is the largest infrared telescope ever launched into space. Its highly sensitive instruments allow scientists to peer into cosmic regions that are hidden from optical telescopes, including dusty stellar nurseries, the centres of galaxies, and newly forming planetary systems. Spitzer’s infrared eyes also allows astronomers see cooler objects in space, like brown dwarves, extrasolar planets, giant molecular clouds, and organic molecules that may hold the secret to life on other planets.

Instead of orbiting Earth itself, the observatory trails behind Earth as it orbits the Sun and drifts away from us at about 1/10th of one astronomical unit per year.

This innovative orbit lets nature cool the telescope, allowing the observatory to operate for around 5.5 years using 360 litres of liquid helium coolant. In comparison, Spitzer’s predecessor, the Infrared Astronomical Satellite, used 520 litres of cryogen in only 10 months.

This unique orbital trajectory also keeps the observatory away from much of Earth’s heat, which can reach 250 Kelvin (-23 Celsius) for satellites and spacecraft in more conventional near-Earth orbits.

More scientific duets: the asteroid belt of Vega

Like a gracefully aging rock star Spitzer is reveling in duets. It has also teamed up with the European Space Agency‘s Herschel Space Observatory. Using data from both astronomers have discovered what appears to be a large asteroid belts around the star Vega, the second brightest star in northern night skies.

The data are consistent with the star having an inner, warm belt and outer, cool belt separated by a gap. The discovery of this asteroid belt-like band of debris around Vega makes the star similar to another observed star called Fomalhaut. Again this formation is similar to the asteroid and Kuiper belts in our own solar system.

Astronomers have discovered what appears to be a large asteroid belt around the bright star Vega, as illustrated here at left in brown. The ring of warm, rocky debris was detected using NASA's Spitzer Space Telescope, and the European Space Agency's Herschel Space Observatory, in which NASA plays an important role. In this diagram, the Vega system, which was already known to have a cooler outer belt of comets (orange), is compared to our solar system with its asteroid and Kuiper belts. The relative size of our solar system compared to Vega is illustrated by the small drawing in the middle. On the right, our solar system is scaled up four times. The comparison illustrates that both systems have inner and outer belts with similar proportions. The gap between the inner and outer debris belts in both systems works out to a ratio of about 1-to-10, with the outer belt 10 times farther away from its host star than the inner belt. Astronomers think that the gap in the Vega system may be filled with planets, as is the case in our solar system. Image credit: NASA/JPL-Caltech

Astronomers have discovered what appears to be a large asteroid belt around the bright star Vega, as illustrated here at left in brown. The ring of warm, rocky debris was detected using NASA’s Spitzer Space Telescope, and the European Space Agency’s Herschel Space Observatory. In this diagram, the Vega system, which was already known to have a cooler outer belt of comets (orange), is compared to our solar system with its asteroid and Kuiper belts. The relative size of our solar system compared to Vega is illustrated by the small drawing in the middle. On the right, our solar system is scaled up four times. The comparison illustrates that both systems have inner and outer belts with similar proportions. The gap between the inner and outer debris belts in both systems works out to a ratio of about 1-to-10, with the outer belt 10 times farther away from its host star than the inner belt. Astronomers think that the gap in the Vega system may be filled with planets, as is the case in our solar system. Image credit: NASA/JPL-Caltech

What is maintaining the gap between the warm and cool belts around Vega and Fomalhaut? The results strongly suggest the answer is multiple planets. Our solar system’s asteroid belt, which lies between Mars and Jupiter, is maintained by the gravity of the terrestrial planets and the giant planets, and the outer Kuiper belt is sculpted by the giant planets.

“Our findings (accepted for publication in the Astrophysical Journal) echo recent results showing multiple-planet systems are common beyond our sun,” said Kate Su, an astronomer at the Steward Observatory at the University of Arizona, Tucson.

Vega and Fomalhaut are similar in other ways. Both are about twice the mass of our sun and burn a hotter, bluer color in visible light. Both stars are relatively nearby, at about 25 light-years away. Fomalhaut is thought to be around 400 million years old, but Vega could be closer to its 600 millionth birthday. For comparison our sun is 4,600 million years old. Fomalhaut has a single candidate planet orbiting it, Fomalhaut b, which orbits at the inner edge of its cometary belt.

The Herschel and Spitzer telescopes detected infrared light emitted by warm and cold dust in discrete bands around Vega and Fomalhaut, discovering the new asteroid belt around Vega and confirming the existence of the other belts around both stars. Comets and the collisions of rocky chunks replenish the dust in these bands. The inner belts in these systems cannot be seen in visible light because the glare of their stars outshines them.

It would seem that Spitzer has quite a bit more productive and novel scientific life, including duets, left in it yet.

This article originally published on Australian Science, read it here.

 

Be the first to comment
            

NASA discovers a new radiation belt around Earth

Posted March 2, 2013 By Kevin Orrman-Rossiter

By Kevin Orrman-Rossiter, University of Melbourne

NASA revealed Friday morning (AEST) that its Van Allen Probes have discovered a third, previously unknown, radiation belt around Earth. The belt appears to be transient, depending strongly on solar activity.

b2znd7p2-1362094488

The Probes mission is part of NASA’s Living With a Star geospace program to explore the fundamental processes that operate throughout the solar system, in particular those that generate hazardous space weather effects near Earth and phenomena that could affect solar system exploration.

In what could perhaps be described as serendipitous, scientists had switched on key instruments on the the twin probes (which are described in detail in the second video below) just three days after launch from Cape Canaveral Air Force Station in Florida on August 30 last year.


Within days of launch, the Van Allen Probes kicked a major goal.

That decision was made in order that observations would overlap with those of another mission, the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) – launched in 1992 – that was about to de-orbit and re-enter Earth’s atmosphere.

In practice it meant NASA’s mission scientists gathered data on the third radiation belt for four weeks before a shock-wave from the sun annihilated it.

Radiation belts

The Van Allen Probes are studying an extreme and dynamic regions of space known as the Van Allen Radiation Belts.

These belts are critical regions of space for modern society. They are affected by solar storms and space weather and can change dramatically. They can pose dangers to communication and GPS satellites as well as humans in space – as I’ll discuss shortly.

Named after their discoverer, the late pioneering NASA astrophysicist James Van Allen, these concentric, donut shaped rings are filled with high-energy particles that gyrate, bounce, and drift through a region extending to 65,000 kilometres from the earth’s surface.

The probes’ discovery was a first for the space age. Data from the USA’s first satellites, Explorer 1 and Explorer 3, discovered the inner radiation belt in 1958.


Under the hoods of the Van Allen Probes.

This belt is comprised mostly of high-energy protons, trapped within about 600-6,000 kilometres of Earth’s surface. Those particles are particularly damaging to satellites and humans in space. The International Space Station (ISS) orbits below this belt at 330-410 kilometres.

The second radiation belt was also discovered in 1958 using instruments designed and built by James Van Allen that were launched on Pioneer 3 and Explorer IV.

This larger belt is located 10,000 to 65,000 kilometres above Earth’s surface, and is at its most intense between 14,500 and 19,000 kilometres above Earth. The second belt is much more variable than the inner one. In addition to protons, it contains ions of oxygen and helium.

So what of the third belt? This new, outer zone is comprised mainly of high-energy electrons and very energetic positive ions (mostly protons). As reported today in the journal Science, this torus formed on September 2 last year and persisted unchanged in a height range of 20,000-23,000 kilometres for four weeks. It was then disrupted by a shock-wave from the sun.

Space weather impacts on Earth

The radiation belts are part of a much larger space weather system driven by energy and material that erupt off the sun’s surface and fill the entire solar system. Besides emitting a continuous stream of plasma called the solar wind, the sun periodically releases billions of tons of matter in what are called coronal mass ejections.

These immense clouds of material, when directed towards Earth, can cause large magnetic storms in the space environment around Earth, the magnetosphere and the upper atmosphere.

The term space weather generally refers to conditions on the sun, in the solar wind, and within Earth’s magnetosphere, ionosphere and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and can endanger human life or health.

Most spacecraft in Earth orbit operate partly or entirely within the radiation belts. During periods of intense space weather, the density of particles within the belts increases, making it more likely that a shuttle’s sensitive electronics will be hit by a charged particle.

Ions striking satellites can overwhelm sensors, damage solar cells, and degrade wiring and other equipment. When conditions get especially rough in the radiation belts, satellites often switch to a safe mode to protect their systems.

When high-energy particles – those moving with enough energy to knock electrons out of atoms – collide with human tissue, they alter the chemical bonds between the molecules that make up the tissue’s cells.

Sometimes the damage is too great for a cell to repair and it no longer functions properly. Damage to DNA within cells may even lead to cancer – causing mutations.

During geomagnetic storms, the increased density and energy of particles trapped in the radiation belts means a greater chance that an astronaut will be hit by a damaging particle.

That’s why the ISS has increased shielding around crew quarters, and why NASA carefully monitors each astronaut’s radiation exposure throughout his or her career.

The advances in technology and detection made by NASA in this mission already have had an almost immediate impact on both basic science and the space-based technology we all depend on.

Kevin Orrman-Rossiter does not work for, consult to, own shares in or receive funding from any company or organisation that would benefit from this article, and has no relevant affiliations.

The Conversation

This article was originally published at The Conversation.
Read the original article.

Be the first to comment
            

Does my science look big in this? This week in science

Posted February 28, 2013 By Kevin Orrman-Rossiter
image

This picture depicts the long-range spin-spin interaction (blue wavy lines) in which the spin-sensitive detector on Earth’s surface interacts with geoelectrons (red dots) deep in Earth’s mantle. The arrows on the geoelectrons indicate their spin orientations, opposite that of Earth’s magnetic field lines (white arcs). (Credit: Illustration: Marc Airhart (University of Texas at Austin) and Steve Jacobsen (Northwestern University).)

Being responsible for picking the week’s most interesting science stories is a fun and fascinating challenge. It pushes to me to look beyond my own interests and explore what others find compelling. So I trust you find my ‘science making news’ selection of interest and delight; explore the quantum, human, off-world and mathematical highs of the week.

On the human scale an international team of scientists has been investigating the antibiotic properties of sweat. More precisely they discovered how a natural antibiotic called dermcidin, produced by our skin when we sweat, is a highly efficient tool to fight tuberculosis germs and other dangerous bugs.

Their results could contribute to the development of new antibiotics that control multi-resistant bacteria.

The benefits of a good nights sleep once again are news. Researchers have shown that the disruption in the body’s circadian rhythm can lead not only to obesity, but can also increase the risk of diabetes and heart disease.

Our study confirms that it is not only what you eat and how much you eat that is important for a healthy lifestyle, but when you eat is also very important.

130221091829-large

At the quantum scale, the particle physicists are at it again. Not content with discovering the Higgs Boson they are shedding light (pardon the pun) on a possible 5th force in nature. In a breakthrough physicists have established new limits on what scientists call “long-range spin-spin interactions” between atomic particles. These interactions have been proposed by theoretical physicists but have not yet been seen. If a long-range spin-spin force is found, it not only would revolutionize particle physics but might eventually provide geophysicists with a new tool that would allow them to directly study the spin-polarized electrons within Earth.

The most rewarding and surprising thing about this project was realizing that particle physics could actually be used to study the deep Earth.

The latest news from Mars is that curiosity has relayed new images that confirm it has successfully obtained the first sample ever collected from the interior of a rock on another planet.

Many of us have been working toward this day for years. Getting final confirmation of successful drilling is incredibly gratifying. For the sampling team, this is the equivalent of the landing team going crazy after the successful touchdown.

To wrap up with one further piece of geek excitement. On January 25th at 23:30:26 UTC, the largest known prime number, 257,885,161-1, was discovered on Great Internet Mersenne Prime Search (GIMPS) volunteer Curtis Cooper’s computer. The new prime number, 2 multiplied by itself 57,885,161 times, less one, has 17,425,170 digits. With 360,000 CPUs peaking at 150 trillion calculations per second, 17th-year GIMPS is the longest continuously-running global “grassroots supercomputing”project in Internet history.

Until next week’s Australian Science review, go geekily crazy and enjoy your weekend.

This article was first published on Australian Science, you can read it here.

Be the first to comment
            

Interstellar travel: how to spot a ‘starman’ going by

Posted February 23, 2013 By Kevin Orrman-Rossiter

image

Massive objects moving at near light speeds do not occur naturally in the universe as we know it. If we detect such objects it is a reasonable to assume they are artificial artifacts from advanced intelligent life. This according to Garcia-Escartin and Chamorro-Posada, authors of a recent paper, is a low-cost, sure-fire way of searching for intelligent life outside earth.

image

The habitable zone of Gliese 581 compared with our Solar System’s habitable zone. Image credit NASA.

Searching for life beyond earth is a grand and varied enterprise.

For a start we can look for exoplanets that fall inside the habitable zone of a star. A planet found in this zone may fulfill the requirements for life: liquid water, energy, elements and other nutrients, and appropriate physical conditions. Though we have located many exoplanets in recent times they are far from earth – many light years distant. For example one star system, Gliese 581, is 20.3 light years away (192,048,720,000,000 kilometres). With three planets in its habitable zone, we know nothing about conditions on them. The techniques used to find them can tell us nothing about their ecology – if any. being in a habitable zone does not guarantee life. It is only in recent years that we have realised how inhospitable Venus and Mars are to life – despite being in our habitable zone.

By looking for alien signals or transmissions, as in the SETI programme, we extend our search from ‘possible life’ to intelligent life. For advanced civilisations we look for artificial illumination or interstellar probes.

Let’s face it though, to know we are not alone will require quite good proof for most of us (apart from the misguided minority of UFO believers), and especially for the skeptical scientists.

image

Bussard ram-jet interstellar drive. Image credit NASA.

The intriguing proposition of Garcia-Escartin and Chamorro-Posada is based on three ideas. The first is that anything travelling faster than 3.3% of light speed (5,935,890 kilometres per hour) is artificial. All known natural objects travel slower than this speed, as do our current space probes. This speed was chosen as it is the estimated speed of the nuclear propulsion ship proposed by Freeman Dyson in the Orion project. Although the propulsion technology is feasible today the technological and economic hurdle of creating such a craft is way beyond our current means. Although it is certainly not inconceivable to achieve such interstellar travel in the next 100 years.

image

Scales of speed with respect to the speed of light in vacuum (logarithmic scale). The fastest man-made objects are in the range of velocities from 1/100,000 c to 1/1,000 c. Examples are the fastest manned ship, Apollo 10 on entry, the Galileo probe during its descent into Jupiter and the solar probe Helios 2. For comparison, we have included the average speed of Earth during its orbit around the Sun and the motion of the Solar System with respect to the cosmic microwave background frame. The fastest natural objects, like hypervelocity star HE 0437-5439 and neutron star RX J0822-4300, move in the scale of 1/1,000 c-1/100 c. We define a region of extraordinary propulsion (REP) for speeds which would point to an artificial object. The REP starts at the estimated speed for the nuclear propulsion Orion ship, which could be built with present human technology. Source original paper, Cornell University.

You are possibly thinking about now; “Doesn’t the mass of an object increases massively as its speed approaches light speed?” You would be correct, this consequence of Einstein’s theory of special relativity is demonstrated quite satisfactorily in particle accelerators around the world. To cover this the authors next identify a consequence of relativity theory: relativistic effects amplify the light reflected from a body travelling at near light speed – in some key situations. Allowing for the detection of ‘small’ objects.

This brings in the authors third criteria. Interstellar travel will be from one star system to another. The reflected-light magnifying effect would be greatest for the cases where earth is almost in line with the departure stellar system and the destination stellar system.

image

Earth’s position with respect to the ship’s trajectory. (a) Earth receives the light from the destination star reflected from an approaching ship. (b) Earth receives the light from the origin star reflected from an outbound ship. (c) Earth receives the light from a third star, which is reflected from the ship at an angle. Source original paper, Cornell University.

The authors propose to limit the first search to star systems that are reasonably close to each other (no further than 10 light years apart) to maximise the probability of stellar travel opportunities. Considering that Gliese 581, for example, is greater than 20 light years distance from us, I suggest that this criteria is too limiting.

The paper is an interesting, if not compelling, proposition. The authors do calculate what size an artifact would need to be, travelling at their minimum speed (3.3% light speed), to be detected at the distance of one of our closer stellar neighbours. Could such an artifact be detected by the Hubble or James Webb space telescopes, for example? What is the probability of success of such an experiment, compared to say the SETI experiments?

One idea I did find interesting is by focusing on detecting light reflected from ships, we do not need to assume any intention by the interstellar travellers to communicate with us. The ‘signal’ is independent of alien psychology. It is also independent of propulsion technology – we aren’t looking for any ‘signature’ of any particular technology, known or unknown.

It is an interesting paper. I’m not sure they have presented a compelling enough case to convince a funding body – yet.

This article was first posted on Australian Science you can read it here.

Be the first to comment
            

Ahead of his time: the genius of Nikola Tesla

Posted February 2, 2013 By Kevin Orrman-Rossiter
Nikola Tesla seated

Nikola Tesla – posed in his laboratory.

There is a dominant theme in the life of Nikola Tesla. His undoubted genius. Tesla pioneered, if not invented; AC motors, AC power generation and transmission, high voltage generation (Tesla coil), wireless transmission of power and information, radio controlled boats, cold discharge fluorescent lighting, and the ‘death-ray’.

It also meant that he was ahead of his time, in many cases unable or disdainful to translate what to him was now obvious to those of lesser vision or ability. This resulted in tempestuous clashes with entrepreneurial inventors in three major technologies, technologies that defined this as the ‘Age of Electricity’. Tesla’s was no ordinary progression in life and its  colorful and quirky story continues to determine his eccentric place in history – from near invisibility to cult figure.

tesla-houston-street-laboratory

Tesla, the showman, at his Houston street laboratory in 1898, sending 500,000 volts through his body to light a wireless fluorescent light. Image source Wiki commons.

Two books: many stories

My prompt for this writing this essay was my recent reading of two books on Tesla’s life. His autobiography; My Inventions and other writings, first published serially in 1919 when he was 63, is a technicolour, frenetic meditation on his major discoveries and innovations. It is autobiographical, mixing his life stories with his inventions, the narrative leaping around in time and place as Tesla seemed to in real life. Worth reading to obtain some of the character of Nikola Tesla – even if coloured by his own deliberate self mythologizing.

The second book Wizard: the life and times of Nikola Tesla (by Marc Seifer) captures much of the excitement of this early age of electricity. This book is a chronology of Tesla’s life, informative in its research and illuminating with its vignettes drawn from contemporary memoirs. At the same time its chronological presentation provides a misleading sequential perception of his life.

Seifer also lacks the engineering or science competence to describe in simple terms the genius of Tesla’s inventions. An essential for a biography of someone whose whole life revolved around his work. In the concluding chapters Seifer’s writing starts to take on the ludicrous credulity of the conspiracy theorist – which is a pity the rest of the book is clear of this nonsense.

in defense of Seifer I think it would be challenge for any biographer to tell the whole Tesla story.  Tesla was completely consumed by his ideas and inventions, eschewing most intimate contact – to the extreme of apparently being celibate his whole life. To make credible his fantastic life is a challenge. Furthermore, a modern reader, it most cases will struggle in comprehending the archaic technical descriptions and ideas.

The dawn of the Electric Age

This was an age when electricity and magnetism had only recently been linked by the arcane mathematics of James Clerk Maxwell and electricity was still thought to propagate by vibrations of an aether. Tesla was one of the few people alive who understood the physics of what we now call electromagnetism, and could also translate this into tangible inventions.

nikola-tesla-wardenclyffe

Wardenclyffe, circa 1903. Source Wiki commons.

Tesla’s name is associated with the invention of the rotating magnetic field and the ability of such a field to produce an electric current. By 1882 Tesla had invented and patented the AC polyphase motor – giving the ability to transfer electrical energy into mechanical energy. The reverse of this creates a turbine that converts mechanical energy, from say a waterfall, into electrical energy.

Tesla’s move, in 1884, from Europe to the USA was to develop his own inventions and contribute to Edison’s commercial interests. This collaboration parted  ways over what became the AC-DC power war. Edison’s commercial interests were firmly focused on his incandescent lamps and the use of DC power (direct current; such as we get from a battery). Tesla had correctly intuited from first principles that alternating current (AC power as we now operate our homes and industries on), as different to DC power, could be transported by wires over great distances with minimal power loss.

Ultimately Tesla was proved both scientifically and commercially correct. It was his turbine designs that Westinghouse used in the first major hydroelectric power station in the world – the 1894 powering of Buffalo by the might of Niagara falls.

This was a tumultuous period of commercial expansion. The ability to power industry by electricity rather than steam was arguably a bigger leap than from manual to steam power – certainly in commercial terms. The ensuing law-suits and counter-suits over patent precedence in motors, generation and transmission, roiled across the US and Europe, making and breaking reputations and fortunes. These actions bringing Edison General Electric to its knees and forcing it to join with others to become General Electric.

Westinghouse prevailed, at the same time neglecting to pay Tesla royalties that he deserved – despite he not bothering to ensure he had written agreements. This disdain for the corporate conventions of the time cost Tesla both wealth and reputation. He moved onto other new ideas whilst others claimed his inventions in the law and popular press.

Father of the wireless

This was repeated in the next huge modernisation trend – the invention of the wireless transmission of information. By 1893 Tesla was demonstrating the transmission of electric power by wireless means most notably at the Chicago World fair. He delighted in amazing audiences with fantastic high-voltage discharge displays, passing millions of volts through his body and remote lighting of fluorescent tubes by radio frequency.

Already in 1891 he had discussed his “wireless telegraphy” and demonstrated the technology required in 1892. It was 1894 before Guglielmo Marconi would begin his teenage tinkering in the wireless field.  So why do we remember the name of Marconi as synonymous with radio? Why did he share the 1909 Nobel Prize with Karl Braun rather than with Tesla?

It would appear from historical evidence that Tesla, in his own mind, had already proved it – and moved on. Whereas the entrepreneur in Marconi, much like Edison, was tenacious in development of his inventions. Tesla at this time had formed a company with the financier Pierpont Morgan to commercialise his wireless technologies. Morgan knew their was a fortune in wireless telegraphy and fluorescent lighting; provided they were developed sufficiently to present to investors as near commercial realities.

Nikola Tesla Lightbulb

Nikola Tesla illuminated by one of his wireless powered cold arc lamps. Source Wiki commons.

To this end Morgan had tasked him with demonstrating the fluorescent light technologies and maturing their manufacture and demonstrating his wireless by covering off-shore yacht races. The latter would have been a tangible demonstration for both the rich and the Navy. Tesla did neither. he scorned the triviality of the public demonstration – despite his very public earlier electric demonstrations. This left the field of wireless telegraphy (radio) for Marconi and other to develop. instead Tesla squandered the Morgan money on his other big dream – providing wireless transmission of electric power by radio.

Radio power, transmission and weapons

Tesla’s greatest dream was sure to be one not funded by the likes of Morgan. He envisaged a world where power and information were transmitted world-wide – for free. To this end he he used the money from Morgan to plan and start building a gigantic transmission tower, Wardenclyffe, in 1902. His philanthropic ideals and profligate spending meant that by 1906 his funding from Morgan had dried up, and his dream never realised. The tower was destroyed in 1917 by US Government orders to ensure that it was not used by enemies of the state.

In developing this idea he correctly understood the physics of wireless transmission both through the atmosphere and the ground. Laying down the principles that would guide the subsequent invention of both AM and FM radio.

A combination of creditors, stock market upheavals, World War 1 and the stock market collapse of 1930 ensured that Tesla could never raise the money required to bring about this revolutionary idea. A idea revolutionary even by the social standards and upheavals of the time.

Tesla RC boat1

Tesla’s radio controlled boat. Source Wiki Commons

At the same time Tesla was a continuing fountain of new ideas. Perhaps given the turbulent times these included the world’s first radio controlled boat in 1898 which he continually and unsuccessfully tried to interest the US Navy in, improvements on dirigibles, a helicopter plane called a flivver and at the age of 78 a ‘death-ray’.

This latter ‘invention’ was never built nor even prototyped but harked back to experiments of Tesla in the 1890’s that were only a small step away from the invention of the laser. The ideas were sufficiently developed though to serve as mental prototypes for particle-beam weapons and strategic defense shields loved by science fiction writers and some politicians.

Modern nonsense

Apart from the tangible technological legacies left by Tesla’s prodigious genius there are also quixotically hare-brained modern legacies. These Tesla, if he were alive today, would scoff at. None more so than the Tesla “free-energy-generator

This modern scam is based on the misrepresentation of Tesla’s laudable Wardenclyffe dream and his idea that you could use his generator as a receiver of the, at the time, newly discovered cosmic rays. The radio sophistication and development of radar during and subsequent to WW11 demonstrate the impracticality of large transmitters and receivers of radio power at the levels envisaged by Tesla. We now use networks of smaller powered repeaters (many of these satellites) to ensure uninterrupted radio/telephone/television coverage on a world-wide basis. As for cosmic rays, they are energetic, however of such low density (thankfully for life) that collecting sufficient power from them is impracticable.

That scams based on Tesla exist in this modern age is testament not to conspiracy theories as maintained by these swindlers. Rather it is testimony to Tesla being truly ahead of his time – a time of tumultuous technological growth, which he partially created without ever seeming to inhabit.

A complete biography of Nikola Tesla is still to be written. I believe it will require a writer who understands the science and engineering of Tesla’s age and who has the artistry to weave the many threads of his life into the dynamic, parallel genius of his life – teetering on the precipice of chaos – that was Nikola Tesla.

This article was first published on Australian Science you can read the original here.

3 Comments so far. Join the Conversation
            

The perils of space exploration: last flight of space shuttle Columbia

Posted January 25, 2013 By Kevin Orrman-Rossiter

image

The 28th and last flight (STS-107) of the space shuttle Columbia was ten years ago. Launched on January 16, 2003 Columbia was destroyed at about 0900 EST on February 1, 2003 while re-entering the atmosphere after its 16-day scientific mission. The destruction of the shuttle killed all seven astronauts on board.

An illustrious career

Columbia was the first of the space shuttles to fly, it was successfully launched on April 12, 1981, the 20th anniversary of the first human spaceflight by Yuri Gagarin in Vostok 1, and returned on April 14, 1981, after orbiting the Earth 36 times. The first flight of Columbia (STS-1) was commanded by John Young, a Gemini and Apollo veteran who was the ninth person to walk on the Moon in 1972, and piloted by Robert Crippen, a rookie astronaut who served as a support crew member for the Skylab and Apollo-Soyuz missions.

Columbia has an illustrious career as part of the US space program, featuring many ‘firsts’. It was the first true manned spaceship. It was also the first manned vehicle to be flown into orbit without benefit of previous unmanned “orbital” testing; the first to launch with wings using solid rocket boosters. It was also the first winged reentry vehicle to return to a conventional runway landing, weighing more than 99-tons as it was braked to a stop on the dry lakebed at Edwards Air Force Base, California.

image

Its second flight, STS-2 on November 12, 1981 marked the first re-use of a manned space vehicle. A year later it became the first 4-person space vehicle – bumping this to six on its sixth flight (STS-9) on November 28, 1983. This flight also featured both the first flight of the reusable laboratory ‘Spacelab’ and the first non-American astronaut on a space shuttle, Ulf Merbold. STS-93, launched on July 23, 1999, was commanded by Eileen Collins, the first female Commander of a US spacecraft.

Space Shuttle Columbia flew 28 flights, spent 300.74 days in space, completed 4,808 orbits, launched 8 satellites and flew 201,497,772 km in total, including its final mission. Its penultimate flight (STS-109) was the third of the highly publicised servicing and upgrade flights to the Hubble Space Telescope.

The fatal flight

The rockets fire. Amidst the thundering fiery roar the shuttle lifts majestically from the launch pad. Unnoticed at the time, at 81.9 seconds after launch a foam insulating block disintegrates upon hitting the leading edge of the shuttles left-wing. The launch continues as scheduled. One hour after launch Columbia was in orbit and the crew began to configure it for their 16-day mission in space.

The next day, routine analysis of high-resolution video from the tracking cameras reveals the debris strike. Multiple groups within the mission team review the tapes. They assess the possibility of damage and decide that an image is required of the wing. They make a request to the NASA ground management for imaging of the wing in-orbit.

However, it was considered “of low concern” that the carbon matrix could be damaged by the foam block. The engineers were over-reacting. The Space shuttle Program managers declined to get the Columbia imaged – or alert the shuttle crew. In fact the crew were told that the impact was a “turn-around issue”, something they had seen before and would be a maintenance check only. Titanic-like the mission continued.

Scientifically the mission was great success. The shuttle crew worked around the clock to ensure that maximum scientific value was achieved. Including an investigation of the web-spinning abilities of the Golden orb spider under low gravity. An experiment designed by students from Glen Waverley Secondary College, in Melbourne Australia.

The morning of re-entry all appears calm and normal in the mission control room. As re-entry started the crew are seen to be in good spirits and looking forward to coming home.

Then while travelling at Mach 24.1, during the 10-minute fiery re-entry, when the leading edge reaches temperatures in excess of 1550 Celsius, the damaged thermal protection panels on the wing overheated – then failed catastrophically. The wing and shuttle disintegrating.

The nearly 84,000 pieces of debris from the shuttle are stored in a 16th floor office suite in the Vehicle Assembly Building at the Kennedy Space Center.

The seven crew members who died aboard this final mission were: Rick Husband, Commander; Willie McCool, Pilot; Michael Anderson, Payload Commander; David Brown, Mission Specialist 1; Kalpana Chawla, Mission Specialist 2; Laurel Clark, Mission Specialist 4; and Ilan Ramon, Payload Specialist 1.

Two other died in the search for the debris: Jules Mier (Debris Search Pilot) and Charles Krenek (Debris Search Aviation Specialist).

image

Is spaceflight perilous? Or an unforgiving adventure?

It is rather remarkable that NASA had launched men into space sixteen times during the the Mercury and Gemini programs without a casualty – although there had been some scary moments.

Compared to the cramped and tiny Mercury capsule the Apollo command module was, in spaceflight terms, a luxury liner. So when a spark ignited the oxygen atmosphere of the Apollo 1 capsule on January 27, 1967 killing three astronauts it was shocking for both NASA and the public. The last communication from the Apollo 1 capsule was not revealed for a long time to the public:

Fire! We’ve got a fire in the cockpit! We’ve got a bad fire…..get us out. We’re burning up…..

The last sound was a scream, shrill and brief. After this nothing at NASA would be quite the same again.

The fatal Apollo 1 fire was also unexpected. At the time of the fire the crew of Gus Grissom, John Young and Roger Chaffee were perched atop an empty Saturn V rocket involved in routine testing of the capsule control systems.

The 1986 Challenger disaster was equally shocking – and far more public. The explosion 73 seconds after lift off claimed shuttle crew and vehicle. The cause of explosion was determined to be an o-ring failure in the right solid rocket booster. Cold weather was determined to be a contributing factor. The subsequent investigation and changes delayed the next shuttle launch to late 1988.

image

You could say that space exploration in itself is not inherently dangerous. But to an even greater degree than aviation, it is terribly unforgiving of any carelessness, incapacity or neglect. Gus Grissom has been quoted as saying during the pioneering Mercury missions:

If we die we want people to accept it. We hope that if anything happens to us it will not delay the program. The conquest of space is worth the risk of life.

I’m not sure that Gus Grissom would have accepted these deaths as an acceptable risk of human spaceflight.

The article was originally published on Australian Science, read it here.

2 Comments so far. Join the Conversation
            

Joy to the world: an ode to outer space at Christmas

Posted December 24, 2012 By Kevin Orrman-Rossiter

 

The six Expedition 30 crew members assemble in the U.S. Lab (Destiny) aboard the International Space Station for a brief celebration of the Christmas holiday on Dec. 25.

The six Expedition 30 crew members assemble in the U.S. Lab (Destiny) aboard the International Space Station for a brief celebration of the Christmas holiday on Dec. 25.

By Alice Gorman, Flinders University and Kevin Orrman-Rossiter, University of Melbourne

Christmas – whether you’re religious or not – is a time when people gather their families together to reinforce the bonds that make us human.

In the era of modern telecommunications, distance no longer separates people the way it once did. Whether you’re on another continent, another planet, or floating out in space, satellites enable us to talk to and see each other, to feel connected.

And speaking of Christmas and space, it turns out the two have a bit of a history.

Space travel would explain how Santa can get around the world in one night. Kennedy Space Centre

An Apollo Christmas

Apollo 8 was a Christmas mission, the only one of all the Apollo missions. On December 21, 1968, astronauts Frank Borman, Jim Lovell and Bill Anders blasted off from Cape Kennedy on a Saturn V rocket.

Their Christmas gift to the world was an extraordinary photograph that became one of the icons of the 20th century.

As they orbited the moon a few days after launch, an unscheduled change in orientation suddenly brought the earth into their view. The astronauts scrambled to get their cameras working, and Bill Anders took the famous shot of the Earth rising over the lunar horizon.

NASA

For the first time we saw our whole world from the outside. The fragility and beauty of the blue-and-white globe floating in the sea of darkness ignited an awareness of how interconnected the people of Earth are.

The nascent environmental movement drew inspiration from this vision and people really began to appreciate that we are only a small part of a rather large universe.

The Apollo program provided more concrete presents as well. The crew of Apollo 17, the last men on the moon, made a December 19 splashdown loaded with a 100kg-Santa’s-sack-worth of lunar rocks – our biggest collection so far. Many of these moon rocks were given as goodwill gestures to other nations.

They’re now the most valuable rocks in the world; each lump may be worth millions, as we have no idea when we’ll have the opportunity to get some more. Unbelievably, quite a few of these precious rocks have gone missing!

Home and away

The Apollo missions demonstrated that humans could survive in space; what they couldn’t tell us was whether it was possible to actually live for an extended amount of time in space. This was the purpose of Skylab – the first US spacecraft to be designed as a living space, a home away from home.

Skylab was launched in 1973 and hosted three crews (Skylab 1 was unmanned) during its short working life. While in the space station, the astronauts enjoyed showers, a special dining area, and a sadly punishing toilet routine – everything that left their bodies had to be kept for future analysis.

The crew of the Skylab 4 mission celebrated Christmas in 1973 with a crafty piece of improvisation. Astronauts Gerald Carr, William Pogue and Edward Gibson made this charming Christmas tree out of empty food cans.

Skylab 4 tin can Christmas tree. NASA

Wasting valuable mission time to make the tree may have been a passive act of resistance to having every minute of their waking days overplanned. Later in the three-month mission, the exhausted crew allegedly “mutinied” and chucked the first sickie in space.

Christmas merchandise

On Earth and on the moon, space was quickly incorporated into Christmas traditions.

In 1947, Woomera in South Australia became the location of one of the earliest rocket launch sites in the world. The card shown below, with a Christmas greeting inside, depicts a V2-like rocket being launched over the desert.

Germany developed the V2 in WWII and it became the basis of Cold War space programs in the US, UK, France and Russia. Two ended up in Australia and are now at the Australian War Memorial in Canberra. The card seems to send a rather mixed message about war and peace …

Woomera Christmas card, likely from the late 1940s or early 1950s. Martin Wimmer

Soviet Russia also got into the Christmas card action though not officially – the celebration of Christmas was not encouraged during the Soviet era.

That said, the card below, which depicts St Nicholas and three USSR spacecraft, leaves no doubt that the spirit of Christmas nonetheless endured. (Bonus points if you can identify the spacecraft!)

Soviet rocket Christmas card. Mazaika

Not to be outdone on either the space or Christmas card race, NASA responded in style. In the shot below, the Apollo 14 crew of Alan Shepard, Ed Mitchell and Stuart Roosa, receive a Christmas card from James Loy, Chief, Protocol Branch for the KSC Public Affairs Office.

Note the crew peeping out from behind the Christmas tree on the card.

NASA

Every NASA mission generates merchandise and memorabilia – patches, t-shirts, mugs, etc. But did you know you could give your own Christmas tree a NASA makeover?

The image below, and the one above of Santa and an Apollo capsule, show souvenir Christmas tree ornaments from the Kennedy Space Centre.

2012 Christmas in space

This Christmas will be a quiet one in space. That said, on December 19 a crew of three flight engineers did launch from Kazakhstan to complete expedition 34 on the International Space Station.

Santa on the Moon. Kennedy Space Centre

NASA astronaut Tom Marshburn, Russian cosmonaut Roman Romanenko, and Canadian astronaut Chris Hadfield will get to celebrate Christmas twice – once on December 25, and again for the Russian Orthodox feast on January 7.

Like many modern families, the Mars Rover family – Curiosity, Opportunity and Spirit – will spend the Christmas period far from each other, albeit on the red planet. (For Santa to include them in his rounds, he may need to battle the Martians – or so they thought in this classic 1964 film).

Similarly, the twin Voyager spacecraft are moving ever further apart from each other on their missions to interstellar space.

But it’s not all bad. The same technologies which created the Mars Rover family and the Voyager twins led to our modern telecommunications network.

Human and robot alike are linked in a web of electromagnetic waves that keep us communicating and connected. In space, no-one need feel alone, particularly at Christmas.

The authors do not work for, consult to, own shares in or receive funding from any company or organisation that would benefit from this article. They also have no relevant affiliations.

The Conversation

This article was originally published at The Conversation.
Read the original article.

1 Comment. Join the Conversation
            

NASA’s Curiosity shows there’s more to life than life

Posted December 13, 2012 By Kevin Orrman-Rossiter

By Kevin Orrman-Rossiter, University of Melbourne and Helen Maynard-Casely, Australian Synchrotron

The Curiosity rover has landed on Mars, driven around, started its scientific mission and, as of 4am today (AEDT), started reporting integrated science results.

In a news conference at the American Geophysical Union NASA’s Curiosity mission team presented a measured, low-key and hype-free discussion about the first use of Curiosity’s full array of analytical instruments.

What they have found are chlorinated hydrocarbons – simple organic molecules made up of carbon, chlorine and hydrogen, sulphur-containing compounds, and calcium perchlorate.

Perchlorates are salts that, when dissolved in water, lower the freezing temperature of that water. The presence of those salts could enable water to stay liquid in the near-surface layers of martian soil. This could provide a possible habitat for Martian microbes.

The discovery of perchlorates supports the 2008 finding made by NASA’s Phoenix lander, which detected perchlorate salts in soil samples from Mars’s north polar region. Being a stationary craft, Phoenix could only take limited samples and used a simpler “wet-chemistry” analytical instrument.

 


NASA’s Curiosity rover documented itself in the context of its work site, an area called “Rocknest Wind Drift,” on the 84th Martian day, or sol, of its mission (Oct. 31, 2012). The rover worked at this location from Sol 56 (Oct. 2, 2012) to Sol 100 (Nov. 16, 2012). NASA/JPL-Caltech/MSSS

 

Worth the wait?

The announcement of results from Curiosity comes after weeks of excited anticipation from scientists and the general public alike, following suggestions NASA was getting ready to announce the discovery of life on Mars.

Why? Well, on November 20, the Curiosity mission’s principal investigator John Grotzinger commented to NPR reporter Joe Palca:

The data is one for the history books. It’s looking really good.

This exuberant exclamation about the analysis of Martian soil samples, set off a frenzy of speculation on the internet and since then NASA has been working hard to lower expectations.

In the lead-up to this morning’s press conference NASA even revealed that no, they weren’t about to announce the discovery of life.

The search for life

It’s important to keep in mind that Curiosity never set out to find life. In fact it’s been suggested that, barring an alien waving at Curiosity’s many cameras, life would be more or less undetectable by the rover.

What Curiosity is trying to do is assess the habitability of Mars, both in the past and in the present. Has Mars got the required minerals and energy sources for primitive life to exist? Was there ever a water source that could have aided transport and delivery of these nutrients?

 

Scoop marks in the sand at ‘Rocknest’ This is a view of the third (left) and fourth (right) trenches made by the 4cm-wide scoop on NASA’s Mars rover Curiosity in October 2012. NASA/JPL-Caltech/MSSS

 

To this end, Curiosity is checking the Martian soil for organic molecules – carbon-containing chemicals and salts that could be ingredients for life. Just like the ones it has found.

Where and how?

The newly announced results follow Curiosity’s investigation of sandy soil at a site called “Rocknest”. This site was chosen to provide the first samples of “normal” soil (as if interplanetary soil could ever be normal).

Using a mechanism on its robotic arm, Curiosity dug up five scoopfuls of Martian soil, each from a pit roughly 4cm wide (see image above).

The first Rocknest scoop was collected on the mission’s 61st Martian day (also known as Sol 61) on October 7.

Fine sand and dust from that first scoopful and two subsequent scoops were used to scrub the inside of Curiosity’s sample-handling mechanism and to ensure they were analysing the right soil.

Samples from scoops three, four and five were then analysed by the chemistry and mineralogy instruments inside the rover.

Cause for excitement

These findings are exciting for scientists – they are repeatable and clear enough for the science history books. After all, they are the first well-characterised Martian soil samples. Scientists now have integrated chemical, mineralogical and visual data, which the couldn’t get from earlier landers and rovers.

 

The robotic arm on NASA’s Mars rover Curiosity delivered a sample of Martian soil to the rover’s observation tray for the first time during the mission’s 70th Martian day, or sol (Oct. 16, 2012). NASA/JPL-Caltech/MSSS

 

That said, it might take something a little bit “sexier” than soil analysis before the mainstream media reports Curiosity’s findings with as much gusto as it did with the rover’s landing.

Many voiced frustration over the wait before today’s Curiosity announcement, but given past experience you can understand why NASA needed to scrutinise the results.

We only need to cast our mind back to the “worms” of ALH84001 – supposed evidence for past life on Mars – and the report of arsenic-based life, both of which were eventually retracted by scientists.

Of course, it’s never that simple.

Imagine you had worked for ten years on this rover, no doubt putting in very long work days (and nights) and making the necessary life sacrifices.

You’ve seen the ups and downs of the project and lived through the success of the terrifying landing earlier this year.

Now it’s really happening and the data you have anticipated for years is finally pouring in, with a level of detail you could only have dreamt about. Who wouldn’t be keen to share the results with the world?

 

 

What’s next?

It’s been a productive and trouble-free first three months for Curiosity and the mission team has completed most of its baseline data, instrument and rover testing.

A drilling test experiment is yet to be completed before Curiosity moves on. Curiosity can sample rocks and soil by both scooping and drilling. Now that NASA is sure the analytical instruments are working, they can check out the drill attachment.

Following the drilling test, Curiosity will rove slowly over to the 5.5km-high Mount Sharp via a site called Yellowknife Bay. Mount Sharp is the main investigative target of Curiosity’s primary mission and the point at which the science program gets into full gear.

Mount Sharp’s slopes are gentle enough for Curiosity to climb, analysing and sampling as it goes. As it climbs it will be sampling younger and younger strata of rocks – it really is a Martian areological timeline.

So as we wait for Curiosity to take the next steps (figuratively) on its mission to better understand the red planet, it’s worth remembering that we don’t need to find life for the mission to be both exciting and scientifically worthwhile.

Further reading:

The authors do not work for, consult to, own shares in or receive funding from any company or organisation that would benefit from this article. They also have no relevant affiliations.

The Conversation

This article was originally published at The Conversation.
Read the original article.

Be the first to comment
            

Does my science look big in this? The astrobiology edition

Posted November 18, 2012 By Kevin Orrman-Rossiter

During the 20th century a powerful new idea gradually entered our consciousness and culture: cosmic evolution.  We are all par of a huge narrative: a cosmos billions of years old and billions of light years in extent. It is this idea that caught my attention this month via the proceedings of the Sao Paulo Advanced School of Astrobiology SPASA 2011, published in the October International Journal of Astrobiology.

Although the question of extraterrestrial life is very old, the concept of full-blown cosmic evolution – the connected evolution of planets, stars galaxies and life on Earth and beyond – is much younger. In a rather breathtaking paper, Steven Dick formerly of the Aerospace History at the National Air & Space Museum places his arguments for cosmic evolution. Dick traces the idea from its roots in the 19th century theories of Pierre-Simon Laplace and Robert Chambers through its philosophical, astronomical, and biological upbringing to the present day. He examines evolution, the worldview that it had become in the 1950s and 1960s and how it had permeated culture in numerous ways and different cultures in diverse ways. Dick cautions us though noting “we need to remember that ‘culture’ is not monolithic and that ‘impact’ is a notoriously vague term.”

Cosmic evolution. Image credit: Harvard University.

In addition to the impact of our new understanding on culture, cosmic evolution also provides a window on long-term human destiny, asserts Dick. He presents this idea via three scenarios, the: the physical , biological, and postbiological universe. Life is unique to earth in the physical universe scenario, and the options flow from this situation – think of Isaac Asimov’s Foundation series. We will certainly interact with extraterrestrials in the biological universe – here cosmic evolution commonly ends in life, mind and intelligence. Cultural evolution in a biological universe may replace biologicals with artificial intelligence creating what Dick calls a postbiological universe. We do not know yet, which of these is our reality, that is one of the challenges of astrobiology, maintains Dick.

In a second ‘big-picture’ paper Marcelo Gleiser presents his four ages of astrobiology. For Gleiser the influx of astrophysical data, particularly on the prevalence of exoplanets “indicates that there are plenty of potentially life-bearing platforms within our galaxy.” He then presents the ‘history’ of life in the universe in terms of the steps needed for matter to have sequentially self-organised into more and more complex structures. His sequence is best viewed as a prelude to the physical or biological universe scenarios of Dick. Gleiser’s fourth age, the Cognitive Age (the age of thinking biomolecules), really addresses whether we are unique or not i.e. which of Dick’s two scenarios, the physical or biological are reality. Gleiser’s first three ages: physical, the creation  of stars and planets from atomic nuclei; chemical, in which elements organise into biomolecules; and thirdly biological, in which living creatures of growing complexity form from biomolecules. the papers by Dick and Gleiser are both papers heady and exhilarating conceptual reads.

Jorge Horvath and Douglas Galante accept the premiss that life exists, and then argue we need to take high-energy astrophysical events seriously. Scientists and the public account for meteor impacts in both academic studies, science-fiction writing and film – not so for events such as supernovae, gamma-ray bursts and flares. They show that these events are more frequent than asteroid strikes and that the effects are non-negligible (academic speak for potentially fatal to planet based species). They conclude that just because we have not yet been wiped out by such events can be seen as either a measure of earthlife’s resilience or a threat we are statistically yet to encounter.

The Dry valleys, Antarctica. Photo credit NASA.

My attention was captured by two other papers from the proceedings. Martin Brasier and David Wacey address the problem of studying life in deep space – comparing it to study of life remote in time. This view is pertinent, as it is non-trivial for scientists to determine what is a viable signal of extinct life. The authors develop a set of protocols and then apply these to earth samples, of varying ages. They do this to show how we could interpret similar samples, where much of the desirable information (the context) has been filtered out during the process of transmission (either physical or data) across vast distances of space, or time or both (as is likely on Mars). Even 10 years ago these questions were moot, but we have learned much over the recent past about metabolic pathways and living microbial systems. Brasier and Wacey conclude that there is still work required on pseudo-fossils, structures that arise naturally within complex physico-chemical systems, so that we can confidently agree on signs of life that are remote in space and time.

My final pick is an experimental paper that looks at the ExoMars mission. The European Space Agency and (initially NASA ) ExoMars mission is scheduled for launch in 2018 – specifically to detect life signatures on the surface and subsurface of Mars. This probe will carry, for the first time, a Raman spectrometer,  a technique with proven ability to determine the spectral signals of key biochemicals. The authors support these assertions by assessing samples acquired from Arctic and Antarctic cold deserts and a meteorite crater. These terrestrial environments are similar to those found on Mars. The experimental results presented in this paper demonstrate that it will be possible using this technique to assess and detect spectral signals of extra-terrestrial (Mars in this case) extremophilic life signatures.

This article was first published on the Australian Sciencesite as: Does my science look big in this? The astrobiology edition

Be the first to comment
            

The (nuclear) alchemists of Darmstadt and the doubly magic tin-100 nucleus

Posted September 19, 2012 By Kevin Orrman-Rossiter

An international group of researchers announced in the journal Nature that they had succeeded in creating tin-100.   This experiment helps us understand how heavy elements have formed.  A few minutes after the Big Bang the universe contained no other elements than the lightest; hydrogen and helium.

We, the objects around us, the Earth and the other planets all contain heavier elements; carbon, oxygen, silicon, tin, iron etc.  These elements came into existence later than hydrogen and helium.  They formed through the fusion of atomic nuclei inside of stars.  Elements heavier than iron owe their existence to gigantic stellar explosions called supernovas.  Tin-100 is a very unstable, yet important, element for the understanding the formation of these heavier elements.

A multinational team headed by nuclear physicists from the Technische Universitat Munchen, the Cluster of Excellence Origin and Structures of the Universe and the GSI in Darmstadt carried out these precision experiments.  They shot xenon-124 ions at a sheet of beryllium to create the tin-100 atoms.  The subsequently measured the half-life and decay energy of tin-100 and its decay products using specially developed particle detectors.

What is our world made from?

The inspiration of creating new elements can be traced to alchemical traditions.  Alchemy is an arcane tradition, that can be viewed as a proto-science, a precursor to chemistry and nuclear physics.  It’s prime objective was to produce the mythical philosopher’s stone, which was said to be capable of turning base metals into gold or silver, and also act as an elixir of life that would confer youth and immortality upon its user.

It did bring to chemistry many ideas and provided procedures, equipment, and terminology that are still in use.  It also provided the inspiration for the creation of new elements.  Now we understand to create new elements requires a combination of precision equipment and experimental procedures coupled with a sound understanding of quantum theory.

So what is tin-100 and why is it useful to understand the astrophysics of heavy element formation?

Most people will recognise that matter around us is composed of atoms.   Atoms of carbon, hydrogen, oxygen for example form the building blocks to make organic molecules and silicon and oxygen bond together to make common beach sand and are fused together to make glass.  The familiar metals are solids made of one type of atom, for example gold and aluminium, or combinations, bronze being made of copper and tin atoms.

Atoms in turn are a central nucleus of protons and neutrons surrounded by a swarm of electrons.  The number of protons distinguishes one element from another.  This atomic number is used to designate an element 1 for hydrogen, 8 for oxygen and 50 for tin, for example.  Stable tin comprises 112 nuclear particles – 50 protons and 62 neutrons.  The neutrons act as a kind of buffer between the electrically repelling protons and prevent normal tin from decaying.  Each atom will contain an equal number of electrons to its protons.  Remove or add an electron and the atom becomes an ion, a charged particle.

The strange quantum world of the nuclei

Quantum mechanics which, amongst other things,  explains how the electrons form into shells around the nucleus.  Elements which have filled outer shells, helium, neon, argon, xenon are ‘noble’ gases, chemically inert – not the least reactive.  Nuclei are also complex quantum objects.

As far as we know, nuclei are the smallest objects that can be split up into their constituents.  They are therefore the smallest entities which emergent properties – patterns that arise from complexity – can be studied.  Nuclear scientists study these emergent phenomena and are using them to decipher the nature of the nuclear force.  In contrast to the structure of atoms, for which the fundamental interaction between the electrons and the nucleus – the electromagnetic force – is known with great precision, the interaction between the nucleons – the strong nuclear force – is not so well known.

In nature not all combinations of nucleons are stable.  As a general rule the more protons present then more neutrons are required to stablise the nuclei.  A useful graphical presentation of this is the Segre table of radionuclides.

If the shell structure of electrons was difficult at first for scientists to come to terms with, then the shell structure exhibited by nucleons is not only unexpected it is complex enough not to be discussed in many quantum physics texts.  It was first thought that such densely packed and strongly interacting objects as the nucleons would exhibit a liquid-like behavior, much like the flow of electrons in a good conductor such as a metal.

That is what makes these experiments so exciting.

Stability and magic numbers

Magic numbers are the number of protons or neutrons that form full shells in an atomic nucleus.  The term is thought to have been coined by the physicist Eugene Wigner.  The model has been used to explain – at least for stable nuclei – the observed sequence of magic numbers: 2, 8, 28, 50, 82 and 126.

Nuclei that have a magic number of neutrons or protons are more tightly bound than there non-magic counterparts.  This intrinsic simplicity makes them prime candidates for testing proposed models of nuclear structure.  Even more attractive are the doubly magic nuclei.  The lighter nuclei helium-4, oxygen-16 and calcium-40 do follow the magic number sequence.

However because of the repulsion between protons the line of stable nuclei veers away from the symmetry line.  As a result tin-100 represents the largest nuclei to follow the sequence.  It is bound but unstable.  It is very close to the edge of nuclear stability, where the nuclear force between the protons and neutrons can no longer bind them into a nucleus.  Unfortunately, what makes this nucleus so attractive to study is what also makes it so difficult.

How to make a new element

In nature elements heavier than iron come into being only in powerful stellar explosions – supernovas.  These include, for example, the precious metals gold and silver and the radioactive uranium.  The cauldron of a supernova gives rise to a whole array of high-mass atomic nuclei.  these decay to stable elements via different short-lived intermediate stages.

There are two ways to create new elements in the laboratory.  The first is is to fuse two nuclei in a manner that minimises the loss of protons or α-particles (helium-4 nuclei).  The second is is more brutal, fragmenting a small part off a heavier nuclei in a collision.

In these experiments energetic xenon-124 is sheared by making it collide with a target beryllium foil leaving a residue that is composed of 50 neutrons and 50 protons.  Out of the 120,000,000,000,000 xenon-124 accelerated in the experiment, only 259 tin-100 nuclei were identified.  These results were sufficient though for the decay of tin-100 to be studied with great precision.

The results, excitedly for the researchers, demonstrated a ‘superallowed Gamow-Teller decay‘.  This type of β-decay is beyond the scope of this essay to explain, needless to say it does provide new experimental depth to the models of nuclear chemistry.  It is an important decay transition that occurs in the collapse of supernovae.  It also is important in putting boundaries on the possible mass of the neutrino.  Both of which are important validations of the current nuclear theories as well as providing real experimental data to fine tune the theoretical models.

This allows more real models of nuclear synthesis to be constructed.  Allowing a deeper understanding of how the atoms that make up our universe were created.

Now other laboratories around the world will work on improving the production rates of tin-100 and other exotic nuclei, based on these experiments.  Allowing the emergent properties of these nuclei can be studied in more detail.  Giving us greater understanding of the forces that bind these particles together – to make us!

1 Comment. Join the Conversation
            

Its a wheel! its a wheel – a wheel on Mars!

Posted August 25, 2012 By Kevin Orrman-Rossiter

NASA’s rover Curiosity was safely on Mars.  It was a perfect landing.  The novel sky-crane method had proved its detractors wrong and its designers right.  What was needed then was signs that Curiosity was working as designed.  NASA had said that the first pictures may be anything up to 2 hours after landing.  A long time for the audiences, waiting, live, all over Earth.

“Got thumbnails.” Pause in the control centre, then someone else yells “It’s a wheel, it’s a wheel!” “A wheel on Mars!”  For the second time that momentous afternoon the NASA/Jet propulsion Lab crowd erupted into spontaneous and joyful applause.  Not only had they landed the rover, Curiosity, safely on Mars, they had received the first images back from its cameras.  Sometimes the unscripted, unexpurgated exclamations make for the best history.

The first two pictures were from the front and back hazard cameras.  They were low resolution black and white thumbnails taken through the dust caps that protected the cameras during landing.  As the minutes ticked by higher resolution images came through from the rover.  The business as usual, familiar image enhancement bought into sharp clarity the ‘first’ two images from the robot explorer.

Image from Curiosity’s front Hazard camera, Sol0. Photo credit NASA/JPL.

The first week on Mars

After the exuberance and press conference came the trademark NASA precision and methodical approach.  An approach that gets missions safely to Mars, at the same time can make the audacious appear mundane.

Mission controllers at NASA’s Jet Propulsion Laboratory in Pasadena, are now checking out Curiosity’s subsystems and 10 instruments.  Curiosity is in the opening days of a two-year mission to investigate whether conditions have been favorable for microbial life and preserving clues in the rocks about possible past life.

Mission team members are “living” on Mars time.  A Martian day is approximately 40 minutes longer than an Earth day, meaning team members start their shift 40 minutes later each day.

View of Mount Sharp, Curiosity’s roving destination. Image credit NASA/JPL

Amongst the important system events in this first week was a software upgrade.  It took four days to successfully upgrade Curiosity’s software in its main and back-up computer.  The software had been uploaded during its trek to Mars, but not activated until now.  The software to date was focused on getting Curiosity through the Martian atmosphere and safely to its destination in Gale Crater.  The software upgrade is to cover its surface exploration activity, roving and controlling the various scientific instruments.

Curiosity Ready to Roll

“There will be a lot of important firsts that will be taking place for Curiosity over the next few weeks, but the first motion of its wheels, the first time our roving laboratory on Mars does some actual roving, that will be something special,” said Michael Watkins, mission manager for Curiosity from the Jet Propulsion Laboratory in Pasadena.

Mission engineers are devoting more time to planning the first rove of Curiosity.  In the coming days, the rover will exercise each of its four steerable (front and back) wheels, turning each of them side-to-side before ending up with each wheel pointing straight ahead.  On a later day, the rover will drive forward about one rover-length 3 metres, turn 90 degrees, and then kick into reverse for about 2 metres.  Exciting times for the rover driver team!

View of Mount Sharp, Curiosity’s roving destination. Image credit NASA/JPL

The scientists and engineers of NASA’s Curiosity rover mission have selected the first driving destination for Curiosity.  The target area, named Glenelg, is a natural intersection of three kinds of terrain.  The trek to Glenelg will send the rover 400 metres east-southeast of its landing site.  One of the three types of terrain intersecting at Glenelg is layered bedrock, which is attractive as the first drilling target.

The choice described by Curiosity Principal Investigator John Grotzinger of the California Institute of Technology as, “With such a great landing spot in Gale Crater, we literally had every degree of the compass to choose from for our first drive.”  “We had a bunch of strong contenders.  It is the kind of dilemma planetary scientists dream of, but you can only go one place for the first drilling for a rock sample on Mars.  That first drilling will be a huge moment in the history of Mars exploration.”

Grotzinger estimated the rover’s journey would take between three weeks and two months to arrive at Glenelg, where it will stay for roughly a month before heading to the base of Mount Sharp.

It may be a full year before the remote-controlled rover gets to the base of the peak, which is within 20 kilometres of the rover’s landing site.

Zapping rocks and doing science

Before Curiosity heads off to Glenelg another first will occur.  The team in charge of Curiosity’s Chemistry and Camera instrument, is planning to give their mast-mounted, rock-zapping laser and telescope combination a thorough checkout.  ChemCam has “zapped” its first rock in the name of planetary science.  It was the first time such a powerful laser has been used on the surface of another world.

The Chemistry Camera calibration target, as seen by the camera. Photo credit NASA/JPL.

The technique is called ‘laser-induced breakdown spectroscopy’.  The high-powered, narrow-focused, laser beam vaporises the rock from a distance generating a plasma plume with temperatures in excess of 100,000°C.  At the high temperatures during the early plasma, the vaporised material breaks down into excited ionic and atomic species.  As it cools to 5,000–20,000°C the characteristic atomic emission lines of the elements can be recorded by the camera.  This data is compared to the ‘standards’ that the rover carries to identify the rock components.

The soon to be famous rock N165, target for testing the Chemistry Camera laser and analysis. Photo credit NASA/JPL.

As Roger Wiens, principal investigator of the ChemCam instrument from the Los Alamos National Laboratory explained earlier, “Rock N165 looks like your typical Mars rock, about three inches wide. It’s about 10 feet away.” “We are going to hit it with 14 millijoules of energy 30 times in 10 seconds.  It is not only going to be an excellent test of our system, it should be pretty cool too.”

Pretty cool indeed.

First weather report in 30 years

It is currently just above freezing point in gale Crater where Curiosity is.

Grotzinger noted the team’s report on the Martian crater’s temperature was “really an important benchmark for Mars science”.

“It’s been exactly 30 years since the last long duration monitoring weather station was present on Mars,” when Viking 1 stopped communicating with Earth in 1982,” he said.  Then Viking 1 lander recorded temperatures that varied from −17.2 °C to −107 °C.

Sensors on two finger-like mini-booms extending horizontally from the mast of NASA’s Mars rover Curiosity will monitor wind speed, wind direction and air temperature. One also will monitor humidity; the other also will monitor ground temperature. The sensors are part of the Rover Environmental Monitoring Station, provided by Spain for the Mars Science Laboratory mission.

The weather station devices on Curiosity being tested prior to launch. Photo credit NASA/JPL.

In this image, the spacecraft specialist’s hands are just below one of the Rover Environmental Monitoring Station mini-booms. The other mini-boom extends to the left a little farther up the mast.

As Curiosity’s primary mission is for a full Martian year it will be able to record the seasonal variations that occur for Mars.

On the ground radiation monitoring and weather conditions will be crucial for any future exploration or habitation by humans.  This mission by Curiosity represents an important step towards these aspirations.

This article was originally published on Australian Science on August 20, 2012.

2 Comments so far. Join the Conversation
            

NASA landing Curiosity, science, and technology on Mars

Posted August 11, 2012 By Kevin Orrman-Rossiter

Curiosity approaches Mars, and artist’s concept. Image credit: NASA

Go to NASA TV or Ustream, now.  Otherwise you may be missing your ‘Apollo’ moment .  In about an hour’s time the NASA control room in Pasadena will be strained, hushed, waiting to hear these joyful words, “touchdown signal detected.” The signal that the rover, Curiosity, has has landed safely on Mars.

After a picture perfect launch and a 254 day voyage the Mars Science Laboratory, Curiosity, is primed to descend to the  Gale Crater on the Martian equator at 3:31pm (AEST).

A safe landing on Mars

Landing a 899kg specialised roving science laboratory onto Mars is an audacious mission by NASA. The mass of the rover has presented  new technological challenges to NASA engineers. The airbag landing method of the previous three successful rovers was not a viable option for Curiosity.

This has given the NASA engineers the opportunity to trial technology that could be used for later human exploration missions.

As Curiosity enters the top of the Martian atmosphere, 125 kilometres, above the Martian surface, she will be travelling at about 21,960 kilometres per hour.  Then begins her “7 minutes of Terror”, her self-guided descent to the surface. Although NASA used this description initially for the May 25, 2008 landing of the Martian polar lander, Phoenix, it is still apt for the current challenge.

Curiosity’s sky-crane landing, and artist’s concept. Image credit: NASA

Of the 38 Mars space missions (fly-by, landers and rovers) since 1960 only seven have been successful. Curiosity’s guided descent is still considered less risky than that experienced by Spirit, Opportunity, and the Viking 1 and 2.

Why will Curiosity will go through her landing sequence unaided?  Simply radio signals will take some 14 minutes to be relayed from Mars to Earth.  When the mission controllers receive the first entry signals – Curiosity will already have been on the Martian surface for some seven minutes.

If previous landings are anything to go by.  you can expect the control room to be a sea of crisply-ironed blue NASA/JPL shirts. The landing to be accompanied by gleeful shouts, smiles, fist-pumping and manly hugs.

Experiencing this Curiosity moment

I am old enough to have experienced the first Apollo moment. I was one of the geeks who were at the CSIROTweetup for the launch last November. I will witnessing this hopefully historic event, again joining others at the Canberra Deep Space Communication Complex. If you are in Canberra join us at the landing party.

In Melbourne the Space Association and the Victorian Space Science Education Centre have partnered for a Melbourne landing party. Again if you are not near these then grab your nearest iDevice or conference room and stream NASA live.

Snapshots for the folks back home

Within minutes of landing the first pictures will be taken by Curiosity.  These will be low-resolution black and white images. These very first images are likely to arrive more than two hours after landing, due to the timing of NASA’s signal-relaying Odyssey orbiter.

Curiosity’s many cameras. Image credit NASA/JPL

These first views will give engineers a good idea of what surrounds Curiosity, as well as its location and tilt. Once engineers have determined that it is safe they will deploy the rover’s Remote Sensing Mast and its high-tech cameras, a process that may take several days. Curiosity will start surveying its exotic surroundings.

As the rover descends it will acquire low-resolution colour pictures from it’s Mars Descent Imager (MARDI). These initial colour images will also help pinpoint the rover’s location. They, as well as one full-resolution image, are expected to be released the day after landing.

Additional colour images of Mars’ surface are expected some further 12 hours later from the Mars Hand Lens Imager (MAHLI). This camera, located on its arm, is designed to take close-up pictures of rocks and soil. When Curiosity lands and its arm is still stowed, the instrument will be pointed to the side, allowing it to capture an initial colour view of the Gale Crater area.

Once Curiosity’s mast is standing tall, the Navigation cameras will begin taking stereo pictures 360 degrees around the rover. These cameras can resolve the equivalent of a golf ball lying 25 metres away. They are designed to survey the landscape fairly quickly. If the mast is deployed on schedule, expect to see these pictures about three days after landing.

Let the science begin

The landing site is Gale Crater, an ancient impact crater 154 kilometres in diameter.  It holds a mountain rising five kilometres above the crater floor.

The impact crater is deep. The Gale mountain offers one of the deepest continuous sequence of rock layers in the solar system. Deep enough to provide access to an unprecedented cross-section of the global Martian geological history.

The slope of the mountain is gentle enough for Curiosity to climb. During its primary mission Curiosity will travel some 20 kilometres in total. Probably exploring not much beyond some intriguing areas near its landing site.

The pace at which Curiosity gets to the features of high scientific interest will depend on a number of things; the findings and decisions made after landing, including the possibility of finding the unexpected!

Earth and Moon from the Mars Reconaissance Orbiter in orbit around Mars 2007. Photo credit: NASA/JPL-Caltech/University of Arizona

Grab this opportunity and share it.  It’s fascinating to see what journeys begin from such real Martian moments of inspiration and challenge.

This article had an interesting time.  This is as originally submitted to The Conversation.  Unfortunately they could not contact me on the day of the landing as I was in Canberra in a radio -quiet zone.  After eventually making contact after the landing time this was re-edited and became; NASA’s Curiosity is on Mars safely – so now what?

Be the first to comment